Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ...Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.展开更多
In this work,we demonstrate aπ-phase-shifted tilted fiber Bragg grating(π-PSTFBG)-based sensor for measuring the refractive index(RI)of NaCl solutions,achieving a real-time and online measurement system by employing...In this work,we demonstrate aπ-phase-shifted tilted fiber Bragg grating(π-PSTFBG)-based sensor for measuring the refractive index(RI)of NaCl solutions,achieving a real-time and online measurement system by employing a densely connected convolutional neural network(D-CNN)model to demodulate the full spectrum.The proposedπ-PSTFBG sensor is prepared by using the advanced fiber grating inscription system based on a two-beam interferometry method,which could introduce deeper features of dip-splitting for all the lossy dips in the spectrum,giving the possibility of fully measuring the change of RI.This enhanced feature gives relatively higher prediction accuracy(R^(2) of 99.67%)using the well-trained D-CNN model compared with the results achieved by pure TFBG or that with a gold coating.As a further demonstration from a practical view,a prototype integrated with the proposed D-CNN algorithm is developed to conduct RI measurement of NaCl solutions in real time using aπ-PSTFBG-based RI sensor.The results show that the proposed real-time demodulation system is capable of measuring RI with an average error of 1.6×10^(-4)RIU in a short response time of<1 s.The demonstrated spectral demodulation approach powered by deep learning shows great potential in real-time analysis for chemical solutions and point-of-care medical testing based on RI changes,especially for the portable requirements.展开更多
基金Financial support provided by the National Natural Science Foundation of China(Grant Nos.11702042 and 91952104)。
文摘Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model.
基金National Natural Science Foundation of China(62275277,U2001601)Guangdong Project(2021QN02X055)+3 种基金Guangdong ST Programme(2024B0101030001)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(23lgbj007)Science and Technology Planning Project of Guangzhou(2024A04J9891)Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(SML2023SP231)。
文摘In this work,we demonstrate aπ-phase-shifted tilted fiber Bragg grating(π-PSTFBG)-based sensor for measuring the refractive index(RI)of NaCl solutions,achieving a real-time and online measurement system by employing a densely connected convolutional neural network(D-CNN)model to demodulate the full spectrum.The proposedπ-PSTFBG sensor is prepared by using the advanced fiber grating inscription system based on a two-beam interferometry method,which could introduce deeper features of dip-splitting for all the lossy dips in the spectrum,giving the possibility of fully measuring the change of RI.This enhanced feature gives relatively higher prediction accuracy(R^(2) of 99.67%)using the well-trained D-CNN model compared with the results achieved by pure TFBG or that with a gold coating.As a further demonstration from a practical view,a prototype integrated with the proposed D-CNN algorithm is developed to conduct RI measurement of NaCl solutions in real time using aπ-PSTFBG-based RI sensor.The results show that the proposed real-time demodulation system is capable of measuring RI with an average error of 1.6×10^(-4)RIU in a short response time of<1 s.The demonstrated spectral demodulation approach powered by deep learning shows great potential in real-time analysis for chemical solutions and point-of-care medical testing based on RI changes,especially for the portable requirements.