期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Artificial neural network-based subgrid-scale models for LES of compressible turbulent channel flow 被引量:1
1
作者 Qingjia Meng Zhou Jiang Jianchun Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期58-69,共12页
Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained ... Fully connected neural networks(FCNNs)have been developed for the closure of subgrid-scale(SGS)stress and SGS heat flux in large-eddy simulations of compressible turbulent channel flow.The FCNNbased SGS model trained using data with Mach number Ma=3.0 and Reynolds number Re=3000 was applied to situations with different Mach numbers and Reynolds numbers.The input variables of the neural network model were the filtered velocity gradients and temperature gradients at a single spatial grid point.The a priori test showed that the FCNN model had a correlation coefficient larger than 0.91 and a relative error smaller than 0.43,with much better reconstructions of SGS unclosed terms than the dynamic Smagorinsky model(DSM).In a posteriori test,the behavior of the FCNN model was marginally better than that of the DSM in predicting the mean velocity profiles,mean temperature profiles,turbulent intensities,total Reynolds stress,total Reynolds heat flux,and mean SGS flux of kinetic energy,and outperformed the Smagorinsky model. 展开更多
关键词 Compressible turbulent channel flow Fully connected neural network model Large eddy simulation
在线阅读 下载PDF
Deep learning assisted real-time and portable refractometer using aπ-phase-shifted tilted fiber Bragg grating sensor
2
作者 ZIQI LIU CHANG LIU +2 位作者 TUAN GUO ZHAOHUI LI ZHENGYONG LIU 《Photonics Research》 2025年第8期2202-2212,共11页
In this work,we demonstrate aπ-phase-shifted tilted fiber Bragg grating(π-PSTFBG)-based sensor for measuring the refractive index(RI)of NaCl solutions,achieving a real-time and online measurement system by employing... In this work,we demonstrate aπ-phase-shifted tilted fiber Bragg grating(π-PSTFBG)-based sensor for measuring the refractive index(RI)of NaCl solutions,achieving a real-time and online measurement system by employing a densely connected convolutional neural network(D-CNN)model to demodulate the full spectrum.The proposedπ-PSTFBG sensor is prepared by using the advanced fiber grating inscription system based on a two-beam interferometry method,which could introduce deeper features of dip-splitting for all the lossy dips in the spectrum,giving the possibility of fully measuring the change of RI.This enhanced feature gives relatively higher prediction accuracy(R^(2) of 99.67%)using the well-trained D-CNN model compared with the results achieved by pure TFBG or that with a gold coating.As a further demonstration from a practical view,a prototype integrated with the proposed D-CNN algorithm is developed to conduct RI measurement of NaCl solutions in real time using aπ-PSTFBG-based RI sensor.The results show that the proposed real-time demodulation system is capable of measuring RI with an average error of 1.6×10^(-4)RIU in a short response time of<1 s.The demonstrated spectral demodulation approach powered by deep learning shows great potential in real-time analysis for chemical solutions and point-of-care medical testing based on RI changes,especially for the portable requirements. 展开更多
关键词 measurement system phase shifted tilted fiber bragg grating densely connected convolutional neural network d cnn model real time measurement portable refractometer demodulate full spectrumthe advanced fiber grating inscription system refractive index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部