期刊文献+
共找到3,617篇文章
< 1 2 181 >
每页显示 20 50 100
The Impact of Online Networks and Big Data in Life Sciences
1
作者 Ruchita Gujarathi Fabricio F. Costa 《Social Networking》 2014年第1期58-64,共7页
Advances in Information Technology (IT) have enhanced our ability to gather, collect and analyze information from individuals and specific groups of people online. The emergence of online networks has facilitated conn... Advances in Information Technology (IT) have enhanced our ability to gather, collect and analyze information from individuals and specific groups of people online. The emergence of online networks has facilitated connections between individuals by leveraging data exchange in a variety of fields. Online networking in life sciences transforms data collection into actionable information that will improve individual and population health, deliver effective therapies and, consequently, reduce the cost of healthcare. These novel tools might also have a direct impact in personalized medicine programs, since the adoption of new products by health care professionals in life sciences and peer-to-peer learning could be improved using social networks and big data analytics. However, one of the main concerns of information exchange online is data privacy. In this article, we will review how online networks and big data analytics are impacting the life sciences sector. 展开更多
关键词 Online networks big data HEALTH Life SCIENCES Patients DISEASES PRIVACY
暂未订购
Content Centric Networking: A New Approach to Big Data Distribution
2
作者 Yi Zhu Zhengkun Mi 《ZTE Communications》 2013年第2期3-10,共8页
In this paper, we explore network architecture anal key technologies for content-centric networking (CCN), an emerging networking technology in the big-data era. We descrihe the structure anti operation mechanism of... In this paper, we explore network architecture anal key technologies for content-centric networking (CCN), an emerging networking technology in the big-data era. We descrihe the structure anti operation mechanism of tl CCN node. Then we discuss mobility management, routing strategy, and caching policy in CCN. For better network performance, we propose a probability cache replacement policy that is based on cotent popularity. We also propose and evaluate a probability cache with evicted copy-up decision policy. 展开更多
关键词 big data content-centric networking caching policy mobility management routing strategy
在线阅读 下载PDF
Internet of Vehicles in Big Data Era 被引量:25
3
作者 Wenchao Xu Haibo Zhou +4 位作者 Nan Cheng Feng Lyu Weisen Shi Jiayin Chen Xuemin (Sherman) Shen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第1期19-35,共17页
As the rapid development of automotive telematics,modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding enviro... As the rapid development of automotive telematics,modern vehicles are expected to be connected through heterogeneous radio access technologies and are able to exchange massive information with their surrounding environment. By significantly expanding the network scale and conducting both real-time and long-term information processing, the traditional Vehicular AdHoc Networks(VANETs) are evolving to the Internet of Vehicles(Io V), which promises efficient and intelligent prospect for the future transportation system. On the other hand, vehicles are not only consuming but also generating a huge amount and enormous types of data, which is referred to as Big Data. In this article, we first investigate the relationship between Io V and big data in vehicular environment, mainly on how Io V supports the transmission, storage, computing of the big data, and how Io V benefits from big data in terms of Io V characterization,performance evaluation and big data assisted communication protocol design. We then investigate the application of Io V big data in autonomous vehicles. Finally, the emerging issues of the big data enabled Io V are discussed. 展开更多
关键词 Autonomous vehicles big data big data applications data communication IoV vehicular networks
在线阅读 下载PDF
The Roles of 5G Mobile Broadband in the Development of IoT, Big Data, Cloud and SDN 被引量:1
4
作者 Bao-Shuh Paul Lin Fuchun Joseph Lin Li-Ping Tung 《Communications and Network》 2016年第1期9-21,共13页
The fast technology development of 5G mobile broadband (5G), Internet of Things (IoT), Big Data Analytics (Big Data), Cloud Computing (Cloud) and Software Defined Networks (SDN) has made those technologies one after a... The fast technology development of 5G mobile broadband (5G), Internet of Things (IoT), Big Data Analytics (Big Data), Cloud Computing (Cloud) and Software Defined Networks (SDN) has made those technologies one after another and created strong interdependence among one another. For example, IoT applications that generate small data with large volume and fast velocity will need 5G with characteristics of high data rate and low latency to transmit such data faster and cheaper. On the other hand, those data also need Cloud to process and to store and furthermore, SDN to provide scalable network infrastructure to transport this large volume of data in an optimal way. This article explores the technical relationships among the development of IoT, Big Data, Cloud, and SDN in the coming 5G era and illustrates several ongoing programs and applications at National Chiao Tung University that are based on the converging of those technologies. 展开更多
关键词 5G Internet of Things (IoT) Software Defined networks (SDN) big data Analytics Cloud Computing
在线阅读 下载PDF
E-Healthcare Supported by Big Data
5
作者 Jianqi Liu Jiafu Wan +1 位作者 Shenghua He Yanlin Zhang 《ZTE Communications》 2014年第3期46-52,共7页
The era of open information in healthcare has arrived. E-healthcare supported by big data supports the move toward greater trans-parency in healthcare by making decades of stored health data searchable and usable. Thi... The era of open information in healthcare has arrived. E-healthcare supported by big data supports the move toward greater trans-parency in healthcare by making decades of stored health data searchable and usable. This paper gives an overview the e-health-care architecture. We discuss the four layers of the architecture-data collection, data transport, data storage, and data analysis-as well as the challenges of data security, data privacy, real-time delivery, and open standard interface. We discuss the necessity of establishing an impeccably secure access mechanism and of enacting strong laws to protect patient privacy. 展开更多
关键词 healthcare wireless body network big data disease prediction remote monitoring medical data
在线阅读 下载PDF
Exploring the Big Data Using a Rigorous and Quantitative Causality Analysis 被引量:3
6
作者 X. San Liang 《Journal of Computer and Communications》 2016年第5期53-59,共7页
Causal analysis is a powerful tool to unravel the data complexity and hence provide clues to achieving, say, better platform design, efficient interoperability and service management, etc. Data science will surely ben... Causal analysis is a powerful tool to unravel the data complexity and hence provide clues to achieving, say, better platform design, efficient interoperability and service management, etc. Data science will surely benefit from the advancement in this field. Here we introduce into this community a recent finding in physics on causality and the subsequent rigorous and quantitative causality analysis. The resulting formula is concise in form, involving only the common statistics namely sample covariance. A corollary is that causation implies correlation, but not vice versa, resolving the long-standing philosophical debate over correlation versus causation. The applicability to big data analysis is validated with time series purportedly generated with hidden processes. As a demonstration, a preliminary application to the gross domestic product (GDP) data of United States, China, and Japan reveals some subtle USA-China-Japan relations in certain periods.   展开更多
关键词 CAUSALITY big data Information Flow Time Series Causal network
在线阅读 下载PDF
MapReduce Based Parallel Bayesian Network for Manufacturing Quality Control 被引量:4
7
作者 Mao-Kuan Zheng Xin-Guo Ming +1 位作者 Xian-Yu Zhang Guo-Ming Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第5期1216-1226,共11页
Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and... Increasing complexity of industrial products and manufacturing processes have challenged conventional statistics based quality management approaches in the cir- cumstances of dynamic production. A Bayesian network and big data analytics integrated approach for manufacturing process quality analysis and control is proposed. Based on Hadoop distributed architecture and MapReduce parallel computing model, big volume and variety quality related data generated during the manufacturing process could be dealt with. Artificial intelligent algorithms, including Bayesian network learning, classification and reasoning, are embedded into the Reduce process. Relying on the ability of the Bayesian network in dealing with dynamic and uncertain problem and the parallel computing power of MapReduce, Bayesian net- work of impact factors on quality are built based on prior probability distribution and modified with posterior probability distribution. A case study on hull segment manufacturing precision management for ship and offshore platform building shows that computing speed accelerates almost directly pro- portionally to the increase of computing nodes. It is also proved that the proposed model is feasible for locating and reasoning of root causes, forecasting of manufacturing outcome, and intelligent decision for precision problem solving. The inte- gration ofbigdata analytics and BN method offers a whole new perspective in manufacturing quality control. 展开更多
关键词 Bayesian network big data analytics MAPREDUCE Quality control
在线阅读 下载PDF
Efficient Bayesian networks for slope safety evaluation with large quantity monitoring information 被引量:8
8
作者 Xueyou Li Limin Zhang Shuai Zhang 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第6期1679-1687,共9页
New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical me... New sensing and wireless technologies generate massive data. This paper proposes an efficient Bayesian network to evaluate the slope safety using large-quantity field monitoring information with underlying physical mechanisms. A Bayesian network for a slope involving correlated material properties and dozens of observational points is constructed. 展开更多
关键词 SLOPE reliability Monitoring INFORMATION BAYESIAN networks RISK management VALUE of INFORMATION big data
在线阅读 下载PDF
PECS: Towards Personalized Edge Caching for Future Service-Centric Networks 被引量:4
9
作者 Ming Yan Wenwen Li +3 位作者 Chien Aun Chan Sen Bian Chih-Lin I André F. Gygax 《China Communications》 SCIE CSCD 2019年第8期93-106,共14页
Mobile operators face the challenge of how to best design a service-centric network that can effectively process the rapidly increasing number of bandwidth-intensive user requests while providing a higher quality of e... Mobile operators face the challenge of how to best design a service-centric network that can effectively process the rapidly increasing number of bandwidth-intensive user requests while providing a higher quality of experience(QoE). Existing content distribution networks(CDN) and mobile content distribution networks(mCDN) have both latency and throughput limitations due to being multiple network hops away from end-users. Here, we first propose a new Personalized Edge Caching System(PECS) architecture that employs big data analytics and mobile edge caching to provide personalized service access at the edge of the mobile network. Based on the proposed system architecture, the edge caching strategy based on user behavior and trajectory is analyzed. Employing our proposed PECS strategies, we use data mining algorithms to analyze the personalized trajectory and service usage patterns. Our findings provide guidance on how key technologies of PECS can be employed for current and future networks. Finally, we highlight the challenges associated with realizing such a system in 5G and beyond. 展开更多
关键词 big data data mining EDGE CACHING content network PERSONALIZED EDGE CACHING
在线阅读 下载PDF
Motor Fault Diagnosis Based on Short-time Fourier Transform and Convolutional Neural Network 被引量:46
10
作者 Li-Hua Wang Xiao-Ping Zhao +2 位作者 Jia-Xin Wu Yang-Yang Xie Yong-Hong Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1357-1368,共12页
With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and ... With the rapid development of mechanical equipment, the mechanical health monitoring field has entered the era of big data. However, the method of manual feature extraction has the disadvantages of low efficiency and poor accuracy, when handling big data. In this study, the research object was the asynchronous motor in the drivetrain diagnostics simulator system. The vibration signals of different fault motors were collected. The raw signal was pretreated using short time Fourier transform (STFT) to obtain the corresponding time-frequency map. Then, the feature of the time-frequency map was adap- tively extracted by using a convolutional neural network (CNN). The effects of the pretreatment method, and the hyper parameters of network diagnostic accuracy, were investigated experimentally. The experimental results showed that the influence of the preprocessing method is small, and that the batch-size is the main factor affecting accuracy and training efficiency. By investigating feature visualization, it was shown that, in the case of big data, the extracted CNN features can represent complex mapping relationships between signal and health status, and can also overcome the prior knowledge and engineering experience requirement for feature extraction, which is used by tra- ditional diagnosis methods. This paper proposes a new method, based on STFT and CNN, which can complete motor fault diagnosis tasks more intelligently and accurately. 展开更多
关键词 big data Deep learning Short-time Fouriertransform Convolutional neural network MOTOR
在线阅读 下载PDF
Artificial Intelligence Self-Organising (AI-SON) Frameworks for 5G-Enabled Networks: A Review
11
作者 Delali Kwasi Dake 《Journal of Computer and Communications》 2023年第4期33-62,共30页
The fifth generation (5G) networks will support the rapid emergence of Internet of Things (IoT) devices operating in a heterogeneous network (HetNet) system. These 5G-enabled IoT devices will result in a surge in data... The fifth generation (5G) networks will support the rapid emergence of Internet of Things (IoT) devices operating in a heterogeneous network (HetNet) system. These 5G-enabled IoT devices will result in a surge in data traffic for Mobile Network Operators (MNOs) to handle. At the same time, MNOs are preparing for a paradigm shift to decouple the control and forwarding plane in a Software-Defined Networking (SDN) architecture. Artificial Intelligence powered Self-Organising Networks (AI-SON) can fit into the SDN architecture by providing prediction and recommender systems to minimise costs in supporting the MNO’s infrastructure. This paper presents a review report on AI-SON frameworks in 5G and SDN. The review considers the dynamic deployment and functions of the AI-SON frameworks, especially for SDN support and applications. Each module in the frameworks was discussed to ascertain its relevance based on the context of AI-SON and SDN integration. After examining each framework, the identified gaps are summarised as open issues for future works. 展开更多
关键词 Self-Organising networks Artificial Intelligence Software-Defined networks 5G networks big data
在线阅读 下载PDF
Modeling and Mining the Temporal Patterns of Service in Cellular Network
12
作者 Sun Weijian Qin Xiaowei Wei Guo 《China Communications》 SCIE CSCD 2015年第9期11-21,共11页
Recent emergence of diverse services have led to explosive traffic growth in cellular data networks. Understanding the service dynamics in large cellular networks is important for network design, trouble shooting, qua... Recent emergence of diverse services have led to explosive traffic growth in cellular data networks. Understanding the service dynamics in large cellular networks is important for network design, trouble shooting, quality of service(Qo E) support, and resource allocation. In this paper, we present our study to reveal the distributions and temporal patterns of different services in cellular data network from two different perspectives, namely service request times and service duration. Our study is based on big traffic data, which is parsed to readable records by our Hadoop-based packet parsing platform, captured over a week-long period from a tier-1 mobile operator's network in China. We propose a Zipf's ranked model to characterize the distributions of traffic volume, packet, request times and duration of cellular services. Two-stage method(Self-Organizing Map combined with kmeans) is first used to cluster time series of service into four request patterns and three duration patterns. These seven patterns are combined together to better understand the fine-grained temporal patterns of service in cellular network. Results of our distribution models and temporal patterns present cellular network operators with a better understanding of the request and duration characteristics of service, which of great importance in network design, service generation and resource allocation. 展开更多
关键词 big data cellular network data mining hadoop SOM cluster service
在线阅读 下载PDF
面向大数据的BiGAN网络入侵检测 被引量:1
13
作者 李洋 《太原师范学院学报(自然科学版)》 2019年第1期63-66,共4页
针对大数据背景下的网络入侵具有大规模、速度快和入侵变种的特点,提出了一种面向大数据的BiGAN网络入侵检测的方法.通过双向GAN(BiGAN)与潜伏网络的协同机制,有效地提高了检测效率和容灾能力.最后通过实验验证分析,结果表明提出的模型... 针对大数据背景下的网络入侵具有大规模、速度快和入侵变种的特点,提出了一种面向大数据的BiGAN网络入侵检测的方法.通过双向GAN(BiGAN)与潜伏网络的协同机制,有效地提高了检测效率和容灾能力.最后通过实验验证分析,结果表明提出的模型优于OC-SVM,IF,GAN等方法,低误报率、高准确率、高效率,是一种较为可行且有效的网络入侵检测方法. 展开更多
关键词 大数据 入侵检测 bigAN 潜伏网络 协同机制
在线阅读 下载PDF
基于5G网络的设备大数据传输负载优化算法 被引量:2
14
作者 李民 陈普建 +1 位作者 陈秀云 贺佳彦 《吉林大学学报(信息科学版)》 2025年第2期445-450,共6页
为确保大数据稳定传输,提出基于5G网络的设备大数据传输负载优化算法。分析大数据传输性能影响因素,包括数据时延、平均带宽利用率和吞吐量。采用形态学滤波算法对大数据进行低通滤波处理,消除数据中存在的噪声,降低数据传输时延。动态... 为确保大数据稳定传输,提出基于5G网络的设备大数据传输负载优化算法。分析大数据传输性能影响因素,包括数据时延、平均带宽利用率和吞吐量。采用形态学滤波算法对大数据进行低通滤波处理,消除数据中存在的噪声,降低数据传输时延。动态选择大数据传输信道,避免网络中出现数据拥塞现象,提高网络吞吐量。在信息传输矩阵映射的基础上提高数据传输精度,同时设计了容量扩充机制,以此提高网络带宽利用率,完成负载优化。实验结果表明,采用所提算法优化后,提高了带宽利用率,降低了网络能耗和数据传输时延。 展开更多
关键词 5G网络 形态学滤波 设备大数据 容量扩充机制 传输负载优化
在线阅读 下载PDF
中国30个城市高评分五星级酒店在线评论大数据对比分析 被引量:2
15
作者 李颖 郭昱锟 +1 位作者 陈贝蕾 都乐 《开发研究》 2025年第1期106-118,共13页
五星级酒店作为高品质住宿服务的代表,其顾客评价体现了顾客对高品质酒店服务质量的满意程度。选取中国30个城市,对各个城市评分排名前20位的五星级酒店在携程旅行网的在线评论大数据进行词频分析、情感分析和语义网络分析。研究结果显... 五星级酒店作为高品质住宿服务的代表,其顾客评价体现了顾客对高品质酒店服务质量的满意程度。选取中国30个城市,对各个城市评分排名前20位的五星级酒店在携程旅行网的在线评论大数据进行词频分析、情感分析和语义网络分析。研究结果显示,不同地区的五星级酒店,顾客所重视的服务体验与程度存在共性与差异性。词频分析结果表明,顾客较为关注酒店品质、服务态度、房间质量,对于酒店性价比或者周边交通的关注度相对较低。通过情感分析和语义网络分析对顾客评价进行情感色彩判断,针对性地发现顾客要求,进一步验证了词频分析的结果。揭示了不同城市高评分五星级酒店顾客体验与偏好,为高评分五星级酒店品质提升提供策略支持,并为其他高星级酒店服务的优化提供经验借鉴。 展开更多
关键词 五星级酒店 评论大数据 语义网络 情感分析
在线阅读 下载PDF
中国人工智能治理体系构建的需求、经验与路径 被引量:2
16
作者 张伟 林同涛 《北京航空航天大学学报(社会科学版)》 2025年第4期51-61,共11页
人工智能技术的快速发展,使得以政策性文件与领域法嵌套为主的中国人工智能治理模式面临制度碎片化与响应滞后的困境。为了回应人工智能治理现实需求,以历史制度分析与治理模式比较为核心研究路径,以技术革命性突破为划分标准,将人工智... 人工智能技术的快速发展,使得以政策性文件与领域法嵌套为主的中国人工智能治理模式面临制度碎片化与响应滞后的困境。为了回应人工智能治理现实需求,以历史制度分析与治理模式比较为核心研究路径,以技术革命性突破为划分标准,将人工智能治理发展历史划分为“网络法时代”“大数据法时代”“人工智能法时代”三个时期,分析各阶段中技术演进与制度回应的互动逻辑,并在此基础上结合中国实际需求创造性提出适用于中国的治理理论,从而进一步提出从“价值引领、制度供给、实践适配、国际参与”四个维度构建中国特色人工智能治理体系的实践路径。 展开更多
关键词 人工智能 治理体系 历史经验 网络法时代 大数据法时代 人工智能法时代 中国实践路径
在线阅读 下载PDF
大数据赋能的多任务旅游信息分析框架 被引量:1
17
作者 杨光辉 李源彬 杨红兵 《无线电通信技术》 北大核心 2025年第1期187-195,共9页
以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD... 以旅游大数据为基础,考虑长时间范围内的滞后效应以及不同搜索强度指数(Search Intensity Index,SII)之间的多任务影响,提出一种基于大数据的多任务旅游信息分析(Multi-tasking Tourism Information Analysis Based on Big Data,MTIABD)框架。使用融合信息重排序技术预测旅游需求,具体根据图引导结构模拟历史变量对未来变量的滞后影响。每个变量通过时间维度上的卷积神经网络(Convolutional Neural Network,CNN)进行独立编码,利用二分图动态建模滞后效应,通过图聚合进行挖掘,实现对旅游需求的精准预测。基于上述技术,构建旅游需求预测系统,旅游者能够根据需求检索不同景点的信息。在真实数据集上进行大量实验,结果表明所提出的MTIABD框架在一步和多步预测方面均优于现有方法。在平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)指标下,相较于基于实例的多变量时间序列图预测框架(Instance-wise Graph-rased Framework for Multivariate Time Series Forecasting,IGMTF),MTIABD在HK-2021数据集上的性能提高了16.75%,在MO-2021数据集上的性能提高了19.79%。 展开更多
关键词 大数据 多任务 图神经网络 滞后效应
在线阅读 下载PDF
基于复杂网络的境外天然气市场结构变化分析 被引量:4
18
作者 赵宇 王琨 +6 位作者 张艳飞 陈其慎 管青 龙涛 任鑫 商铖红 于起 《地球学报》 北大核心 2025年第5期979-990,共12页
天然气市场是能源市场中重要的一部分,其在2021—2023年期间发生重大变化,能源市场随之改变,本文运用复杂网络的方法讨论了2021—2023年期间全球天然气市场结构的变化。第一,构建2021—2023年期间市场网络,利用Topsis模型与社团分析模... 天然气市场是能源市场中重要的一部分,其在2021—2023年期间发生重大变化,能源市场随之改变,本文运用复杂网络的方法讨论了2021—2023年期间全球天然气市场结构的变化。第一,构建2021—2023年期间市场网络,利用Topsis模型与社团分析模型对这期间的天然气市场结构的演化过程进行了仿真,计算了复杂网络各节点的重要性排名和社团成员,反应这期间市场结构变化。第二,利用抗毁性评估模型对市场网络进行随机和蓄意的攻击,通过计算攻击后连通效率和最大连通子图等指标衡量攻击对网络造成的影响,以此反应市场结构的稳定性变化。研究结果表明:(1)在此期间,从以欧洲为主导向着区域多中心发展,各地区之间竞争激烈。美国保持液化天然气市场的龙头地位,欧洲的地位总体有所下降,非洲、中东等新兴市场崛起。(2)俄罗斯社团被拆分,液化天然气选择与亚洲加深合作但社团规模仍持续缩小,管道天然气社团被拆分但后有所恢复。美国社团不断扩张并保持这一趋势。(3)天然气市场结构在此期间稳定性先降低,后恢复稳定,未来的天然气市场结构将持续变化但变化幅度有所减小。 展开更多
关键词 天然气 市场结构 复杂网络 大数据分析 图形数据社区发现
在线阅读 下载PDF
基于软件定义网络的大数据流量异常检测技术
19
作者 郭新宁 《移动信息》 2025年第10期204-206,共3页
随着软件定义网络与大数据技术的深度融合,传统网络流量异常检测面临高维数据处理低效、实时响应不足等挑战。文中提出了一种基于SDN的大数据流量异常检测模型,通过OpenFlow协议实时采集流级元数据,利用Spark集群实现分布式特征工程,构... 随着软件定义网络与大数据技术的深度融合,传统网络流量异常检测面临高维数据处理低效、实时响应不足等挑战。文中提出了一种基于SDN的大数据流量异常检测模型,通过OpenFlow协议实时采集流级元数据,利用Spark集群实现分布式特征工程,构建“实时基线检测+智能算法识别”双层引擎。研究结果验证了SDN集中控制能力与分布式机器学习的协同优势,为大规模网络环境下的实时异常检测提供了高效解决方案。 展开更多
关键词 软件定义网络 大数据 流量异常检测 分布式算法
在线阅读 下载PDF
基于大数据驱动的激光器网络相位时空同步控制研究
20
作者 何中胜 王伟 《激光杂志》 北大核心 2025年第5期178-183,共6页
激光器网络在运行过程中,常受外界环境因素的干扰,这些干扰易导致激光器的相位发生位移,进而引发数据传输的不稳定性,严重制约了激光器网络通信的质量和数据传输的可靠性。为此,提出基于大数据驱动的激光器网络相位时空同步控制方法。首... 激光器网络在运行过程中,常受外界环境因素的干扰,这些干扰易导致激光器的相位发生位移,进而引发数据传输的不稳定性,严重制约了激光器网络通信的质量和数据传输的可靠性。为此,提出基于大数据驱动的激光器网络相位时空同步控制方法。首先,构建激光器网络结构,深入分析了网络中激光器相位时空同步的特性及其影响因素。然后,以这些影响因素作为约束条件,设计相位同步控制方法。该方法的核心在于利用大数据驱动技术对控制模型中的不确定参数进行优化,从而确保相位同步的精确性和稳定性。实验结果表明,该控制方法能够精确检测相位误差,并将其降至0,极大地提升了激光器网络的通信质量和性能。 展开更多
关键词 大数据驱动方法 激光器网络 相位误差 相位时空同步 控制模型设计
原文传递
上一页 1 2 181 下一页 到第
使用帮助 返回顶部