期刊文献+
共找到3,727篇文章
< 1 2 187 >
每页显示 20 50 100
An Unknown Trojan Detection Method Based on Software Network Behavior 被引量:2
1
作者 LIANG Yu PENG Guojun +1 位作者 ZHANG Huanguo WANG Ying 《Wuhan University Journal of Natural Sciences》 CAS 2013年第5期369-376,共8页
Aiming at the difficulty of unknown Trojan detection in the APT flooding situation, an improved detecting method has been proposed. The basic idea of this method originates from advanced persistent threat (APT) atta... Aiming at the difficulty of unknown Trojan detection in the APT flooding situation, an improved detecting method has been proposed. The basic idea of this method originates from advanced persistent threat (APT) attack intents: besides dealing with damaging or destroying facilities, the more essential purpose of APT attacks is to gather confidential data from target hosts by planting Trojans. Inspired by this idea and some in-depth analyses on recently happened APT attacks, five typical communication characteristics are adopted to describe application’s network behavior, with which a fine-grained classifier based on Decision Tree and Na ve Bayes is modeled. Finally, with the training of supervised machine learning approaches, the classification detection method is implemented. Compared with general methods, this method is capable of enhancing the detection and awareness capability of unknown Trojans with less resource consumption. 展开更多
关键词 targeted attack unknown Trojan detection software network behavior machine learning
原文传递
Trust evolvement method of Web service combination based on network behavior
2
作者 刘济波 向占宏 朱培栋 《Journal of Central South University of Technology》 EI 2008年第4期558-563,共6页
Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the met... Based on the problem that the service entity only has the partial field of vision in the network environment,a trust evolvement method of the macro self-organization for Web service combination was proposed.In the method,the control rule of the trust degree in the Dempster-Shafer(D-S)rule was utilized based on the entity network interactive behavior,and a proportion trust control rule was put up.The control rule could make the Web service self-adaptively study so as to gradually form a proper trust connection with its cooperative entities and to improve the security performance of the whole system.The experimental results show that the historical successful experience is saved during the service combination alliance,and the method can greatly improve the reliability and success rate of Web service combination. 展开更多
关键词 network behavior Web service combination trust evolvement Dempster-Shafer rule
在线阅读 下载PDF
Research on College Frustrated Students' Network Mentality and Behaviors
3
作者 Zichen YIN 《International Journal of Technology Management》 2015年第4期6-8,共3页
Network has not only become a habit and lifestyle for university student, but also brought all sorts of ethical misconducts and ethical issues in society. Based on the analysis of college students' frustrations, this... Network has not only become a habit and lifestyle for university student, but also brought all sorts of ethical misconducts and ethical issues in society. Based on the analysis of college students' frustrations, this paper explores the causes of network behavior anomie for college students, which mainly include: dissatisfaction in real communication, game addiction to the network, craving online pornography, and hooking on online shopping. In addition, it also investigates the ways to wipe out mental frustration in such a cyber era. These ways mainly are to strenzthen online education and management, to make psychological counseling, and to carry on frustration education. 展开更多
关键词 college students network behaviors causes of network behavior anomie ways to overcome mental frustration
在线阅读 下载PDF
Efficient Feature Extraction Using Apache Spark for Network Behavior Anomaly Detection 被引量:2
4
作者 Xiaoming Ye Xingshu Chen +4 位作者 Dunhu Liu Wenxian Wang Li Yang Gang Liang Guolin Shao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2018年第5期561-573,共13页
Extracting and analyzing network traffic feature is fundamental in the design and implementation of network behavior anomaly detection methods. The traditional network traffic feature method focuses on the statistical... Extracting and analyzing network traffic feature is fundamental in the design and implementation of network behavior anomaly detection methods. The traditional network traffic feature method focuses on the statistical features of traffic volume. However, this approach is not sufficient to reflect the communication pattern features. A different approach is required to detect anomalous behaviors that do not exhibit traffic volume changes, such as low-intensity anomalous behaviors caused by Denial of Service/Distributed Denial of Service (DoS/DDoS) attacks, Internet worms and scanning, and BotNets. We propose an efficient traffic feature extraction architecture based on our proposed approach, which combines the benefit of traffic volume features and network communication pattern features. This method can detect low-intensity anomalous network behaviors and conventional traffic volume anomalies. We implemented our approach on Spark Streaming and validated our feature set using labelled real-world dataset collected from the Sichuan University campus network. Our results demonstrate that the traffic feature extraction approach is efficient in detecting both traffic variations and communication structure changes. Based on our evaluation of the MIT-DRAPA dataset, the same detection approach utilizes traffic volume features with detection precision of 82.3% and communication pattern features with detection precision of 89.9%. Our proposed feature set improves precision by 94%. 展开更多
关键词 feature extraction graph theory network behavior anomaly detection Apache Spark
原文传递
Research on behavior recognition algorithm based on SE-I3D-GRU network 被引量:4
5
作者 Wu Jin Yang Xue +1 位作者 Xi Meng Wan Xianghong 《High Technology Letters》 EI CAS 2021年第2期163-172,共10页
In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined... In order to effectively solve the problems of low accuracy and large amount of calculation of current human behavior recognition,a behavior recognition algorithm based on squeeze-and-excitation network(SENet) combined with 3 D Inception network(I3 D) and gated recurrent unit(GRU) network is proposed.The algorithm first expands the Inception module to three-dimensional,and builds a network based on the three-dimensional module,and expands SENet to three-dimensional,making it an attention mechanism that can pay attention to the three-dimensional channel.Then SENet is introduced into the 13 D network,named SE-I3 D,and SENet is introduced into the CRU network,named SE-GRU.And,SE-13 D and SE-GRU are merged,named SE-13 D-GRU.Finally,the network uses Softmax to classify the results in the UCF-101 dataset.The experimental results show that the SE-I3 D-GRU network achieves a recognition rate of 93.2% on the UCF-101 dataset. 展开更多
关键词 behavior recognition squeeze-and-excitation network(SENet) Incepton network gated recurrent unit(GRU)
在线阅读 下载PDF
Calculation of the Behavior Utility of a Network System: Conception and Principle 被引量:5
6
作者 Changzhen Hu 《Engineering》 2018年第1期78-84,共7页
The service and application of a network is a behavioral process that is oriented toward its operations and tasks, whose metrics and evaluation are still somewhat of a rough comparison, This paper describes sce- nes o... The service and application of a network is a behavioral process that is oriented toward its operations and tasks, whose metrics and evaluation are still somewhat of a rough comparison, This paper describes sce- nes of network behavior as differential manifolds, Using the homeomorphic transformation of smooth differential manifolds, we provide a mathematical definition of network behavior and propose a mathe- matical description of the network behavior path and behavior utility, Based on the principle of differen- tial geometry, this paper puts forward the function of network behavior and a calculation method to determine behavior utility, and establishes the calculation principle of network behavior utility, We also provide a calculation framework for assessment of the network's attack-defense confrontation on the strength of behavior utility, Therefore, this paper establishes a mathematical foundation for the objective measurement and precise evaluation of network behavior, 展开更多
关键词 network metric evaluation Differential MANIFOLD network behavior UTILITY network attack-defense CONFRONTATION
在线阅读 下载PDF
Constitutive modeling of compression behavior of TC4 tube based on modified Arrhenius and artificial neural network models 被引量:5
7
作者 Zhi-Jun Tao He Yang +2 位作者 Heng Li Jun Ma Peng-Fei Gao 《Rare Metals》 SCIE EI CAS CSCD 2016年第2期162-171,共10页
Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of ... Warm rotary draw bending provides a feasible method to form the large-diameter thin-walled(LDTW)TC4 bent tubes, which are widely used in the pneumatic system of aircrafts. An accurate prediction of flow behavior of TC4 tubes considering the couple effects of temperature,strain rate and strain is critical for understanding the deformation behavior of metals and optimizing the processing parameters in warm rotary draw bending of TC4 tubes. In this study, isothermal compression tests of TC4 tube alloy were performed from 573 to 873 K with an interval of 100 K and strain rates of 0.001, 0.010 and0.100 s^(-1). The prediction of flow behavior was done using two constitutive models, namely modified Arrhenius model and artificial neural network(ANN) model. The predictions of these constitutive models were compared using statistical measures like correlation coefficient(R), average absolute relative error(AARE) and its variation with the deformation parameters(temperature, strain rate and strain). Analysis of statistical measures reveals that the two models show high predicted accuracy in terms of R and AARE. Comparatively speaking, the ANN model presents higher predicted accuracy than the modified Arrhenius model. In addition, the predicted accuracy of ANN model presents high stability at the whole deformation parameter ranges, whereas the predictability of the modified Arrhenius model has some fluctuation at different deformation conditions. It presents higher predicted accuracy at temperatures of 573-773 K, strain rates of 0.010-0.100 s^(-1)and strain of 0.04-0.32, while low accuracy at temperature of 873 K, strain rates of 0.001 s^(-1)and strain of 0.36-0.48.Thus, the application of modified Arrhenius model is limited by its relatively low predicted accuracy at some deformation conditions, while the ANN model presents very high predicted accuracy at all deformation conditions,which can be used to study the compression behavior of TC4 tube at the temperature range of 573-873 K and the strain rate of 0.001-0.100 s^(-1). It can provide guideline for the design of processing parameters in warm rotary draw bending of LDTW TC4 tubes. 展开更多
关键词 TC4 tube Compression behavior Constitutive model Modified Arrhenius model Neural network model
原文传递
The Research on E-mail Users' Behavior of Participating in Subjects Based on Social Network Analysis 被引量:3
8
作者 ZHANG Lejun ZHOU Tongxin +2 位作者 Qi Zhixin GUO Lin XU Li 《China Communications》 SCIE CSCD 2016年第4期70-80,共11页
The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related in... The e-mail network is a type of social network. This study analyzes user behavior in e-mail subject participation in organizations by using social network analysis. First, the Enron dataset and the position-related information of an employee are introduced, and methods for deletion of false data are presented. Next, the three-layer model(User, Subject, Keyword) is proposed for analysis of user behavior. Then, the proposed keyword selection algorithm based on a greedy approach, and the influence and propagation of an e-mail subject are defined. Finally, the e-mail user behavior is analyzed for the Enron organization. This study has considerable significance in subject recommendation and character recognition. 展开更多
关键词 E-MAIL network social network ANALYSIS user behavior ANALYSIS KEYWORD selection
在线阅读 下载PDF
Container Networking Performance Analysis for Large-Scale User Behavior Simulation 被引量:1
9
作者 Yifang Ji Guomin Zhang +1 位作者 Shengxu Xie Xiulei Wang 《Journal of Computer and Communications》 2019年第10期136-146,共11页
Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-... Accurately simulating large-scale user behavior is important to improve the similarity between the cyber range and the real network environment. The Linux Container provides a method to simulate the behavior of large-scale users under the constraints of limited physical resources. In a container-based virtualization environment, container networking is an important component. To evaluate the impact of different networking methods between the containers on the simulation performance, the typical container networking methods such as none, bridge, macvlan were analyzed, and the performance of different networking methods was evaluated according to the throughput and latency metrics. The experiments show that under the same physical resource constraints, the macvlan networking method has the best network performance, while the bridge method has the worst performance. This result provides a reference for selecting the appropriate networking method in the user behavior simulation process. 展开更多
关键词 Linux CONTAINER networkING Mode network Performance USER behavior SIMULATION
在线阅读 下载PDF
Deep Neural Network Based Behavioral Model of Nonlinear Circuits
10
作者 Zhe Jin Sekouba Kaba 《Journal of Applied Mathematics and Physics》 2021年第3期403-412,共10页
With the rapid growth of complexity and functionality of modern electronic systems, creating precise behavioral models of nonlinear circuits has become an attractive topic. Deep neural networks (DNNs) have been recogn... With the rapid growth of complexity and functionality of modern electronic systems, creating precise behavioral models of nonlinear circuits has become an attractive topic. Deep neural networks (DNNs) have been recognized as a powerful tool for nonlinear system modeling. To characterize the behavior of nonlinear circuits, a DNN based modeling approach is proposed in this paper. The procedure is illustrated by modeling a power amplifier (PA), which is a typical nonlinear circuit in electronic systems. The PA model is constructed based on a feedforward neural network with three hidden layers, and then Multisim circuit simulator is applied to generating the raw training data. Training and validation are carried out in Tensorflow deep learning framework. Compared with the commonly used polynomial model, the proposed DNN model exhibits a faster convergence rate and improves the mean squared error by 13 dB. The results demonstrate that the proposed DNN model can accurately depict the input-output characteristics of nonlinear circuits in both training and validation data sets. 展开更多
关键词 Nonlinear Circuits Deep Neural networks behavioral Model Power Amplifier
在线阅读 下载PDF
Empirical Study on Influence of Brand Crisis of Agricultural Products on Network Cluster Behavior of Consumers
11
作者 Chong GONG 《Asian Agricultural Research》 2016年第6期1-4,8,共5页
From the perspective of psychological contract,this paper discusses mechanism of consumers' network cluster behavior in the context of brand crisis. On the basis of Simmel's conflict theory,it presented new fi... From the perspective of psychological contract,this paper discusses mechanism of consumers' network cluster behavior in the context of brand crisis. On the basis of Simmel's conflict theory,it presented new findings of network cluster behavior. It is concluded that brand crisis exerts significant influence on breach of psychological contract. Particularly,functional brand crisis more easily leads to breach of transactional psychological contract,while value brand crisis more easily leads to breach of relational psychological contract. Breach of transactional psychological contract more easily leads to realistic network cluster behavior,while breach of relational psychological contract does not necessarily lead to non-realistic network cluster behavior. 展开更多
关键词 BRAND crisis network cluster behavior Breach of PSYCHOLOGICAL contract
在线阅读 下载PDF
A Co-Evolution Model for Dynamic Social Network and Behavior
12
作者 Liping Tong David Shoham Richard S. Cooper 《Open Journal of Statistics》 2014年第9期765-775,共11页
Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behaviora... Individual behaviors, such as drinking, smoking, screen time, and physical activity, can be strongly influenced by the behavior of friends. At the same time, the choice of friends can be influenced by shared behavioral preferences. The actor-based stochastic models (ABSM) are developed to study the interdependence of social networks and behavior. These methods are efficient and useful for analysis of discrete behaviors, such as drinking and smoking;however, since the behavior evolution function is in an exponential format, the ABSM can generate inconsistent and unrealistic results when the behavior variable is continuous or has a large range, such as hours of television watched or body mass index. To more realistically model continuous behavior variables, we propose a co-evolution process based on a linear model which is consistent over time and has an intuitive interpretation. In the simulation study, we applied the expectation maximization (EM) and Markov chain Monte Carlo (MCMC) algorithms to find the maximum likelihood estimate (MLE) of parameter values. Additionally, we show that our assumptions are reasonable using data from the National Longitudinal Study of Adolescent Health (Add Health). 展开更多
关键词 SOCIAL network SOCIAL behavior CO-EVOLUTION MARKOV CHAIN STATIONARY Distribution
暂未订购
Golay Code Clustering for Mobility Behavior Similarity Classification in Pocket Switched Networks
13
作者 Hongjun YU Tao Jing +1 位作者 Dechang Chen Simon Y. Berkovich 《通讯和计算机(中英文版)》 2012年第4期466-472,共7页
关键词 流动行为 交换网络 相似性 分类代码 聚类 端到端时延 口袋 路由协议
在线阅读 下载PDF
LONG-TIME BEHAVIOR OF TRANSIENT SOLUTIONS FOR CELLULAR NEURAL NETWORK SYSTEMS
14
作者 蒋耀林 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第3期321-326,共6页
By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in g... By establishing concept an transient solutions of general nonlinear systems converging to its equilibrium set, long-time behavior of solutions for cellular neural network systems is studied. A stability condition in generalized sense is obtained. This result reported has an important guide to concrete neural network designs. 展开更多
关键词 dynamic stability cellular neural network systems long-time behavior of transient solutions
在线阅读 下载PDF
Analog-Circuit Model of FGH96 Superalloy Hot Deformation Behaviors Based on Artificial Neural Network
15
作者 刘玉红 李付国 +1 位作者 李超 吴诗 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2005年第1期90-96,共7页
At the present time, numerical models (such as, numerical simulation based on FEM) adopted broadly in technological design and process control in forging field can not implement the realtime control of material form... At the present time, numerical models (such as, numerical simulation based on FEM) adopted broadly in technological design and process control in forging field can not implement the realtime control of material forming process. It is thus necessary to establish a dynamic model fitting for the real-time control of material deformation processing in order to increase production efficiency, improve forging qualities and increase yields. In this paper, hot deformation behaviors of FGH96 superalloy are characterized by using hot compressive simulation experiments. The artificial neural network (ANN) model of FGH96 superalloy during hot deformation is established by using back propagation (BP) network. Then according to electrical analogy theory, its analog-circuit (AC) model is obtained through mapping the ANN model into analog circuit. Testing results show that the ANN model and the AC model of FGH96 superalloy hot deformation behaviors possess high predictive precisions and can well describe the superalloy's dynamic flow behaviors. The ideas proposed in this paper can be applied in the real-time control of material deformation processing. 展开更多
关键词 FGH96 superalloy flow behavior artificial neural network(ANN) analog-circuit
在线阅读 下载PDF
Nonlinear Dynamical Behavior in BS Evolution Model Based on Small-World Network Added with Nonlinear Preference
16
作者 ZHANG Ying-Yue YANG Qiu-Ying CHEN Tian-Lun Department of Physics,Nankai University,Tianjin 300071,China 《Communications in Theoretical Physics》 SCIE CAS CSCD 2007年第7期137-142,共6页
We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant st... We introduce a modified small-world network adding new links with nonlinearly preferential connectioninstead of adding randomly,then we apply Bak-Sneppen(BS)evolution model on this network.We study severalimportant structural properties of our network such as the distribution of link-degree,the maximum link-degree,and thegth of the shortest path.We further argue several dynamical characteristics of the model such as the important criticalvalue f_c,the f_0 avalanche,and the mutating condition,and find that those characteristics show panticular behaviors. 展开更多
关键词 power-law behavior small-world network evolution model nonlinear preference
在线阅读 下载PDF
基于时空交互网络的人体行为检测方法研究 被引量:1
17
作者 田青 张浩然 +2 位作者 楚柏青 张正 豆飞 《计算机应用与软件》 北大核心 2025年第4期156-165,共10页
针对现有的人体行为检测方法中,存在特征融合能力较差、时序信息相关性不强和行为边界不明确等问题,提出一种基于时空交互网络的人体行为检测方法。重新设计了双流特征提取模块,在空间流和时空流两个网络之间添加连接层;分别在空间流和... 针对现有的人体行为检测方法中,存在特征融合能力较差、时序信息相关性不强和行为边界不明确等问题,提出一种基于时空交互网络的人体行为检测方法。重新设计了双流特征提取模块,在空间流和时空流两个网络之间添加连接层;分别在空间流和时间流网络中引入改进的空间变换网络和视觉注意力模型;设计基于像素筛选器的特征融合模块,用于重点区域时序信息相关性的计算和两类不同维度特征的聚合;对网络的损失函数进行了优化。在AVA数据集上的实验结果表明该方法在检测精度、速度以及泛化能力上具有优越性。 展开更多
关键词 时空交互网络 人体行为检测 视觉注意力 特征融合 损失函数
在线阅读 下载PDF
基于改进LSTM的网络入侵检测方法 被引量:3
18
作者 黄亮 陶达 +2 位作者 王秀木 刘静闻 刘也凡 《计算机测量与控制》 2025年第2期63-70,共8页
随着网络数据的增加,以及黑客技术的不断发展,网络入侵检测技术的精度以及效率需要进一步提升;针对此问题,提出一种基于逃避网络数据和改进长短时记忆网络的网络入侵检测模型;该模型将黑客入侵过程中产生的异常数据作为训练集和测试集;... 随着网络数据的增加,以及黑客技术的不断发展,网络入侵检测技术的精度以及效率需要进一步提升;针对此问题,提出一种基于逃避网络数据和改进长短时记忆网络的网络入侵检测模型;该模型将黑客入侵过程中产生的异常数据作为训练集和测试集;之后利用麻雀优化算法改进长短时记忆网络模型,并将其与卷积神经网络结合,通过强化学习进一步提升模型的检测精度;实验结果表明,基于改进长短时记忆网络的入侵检测模型的检测准确率达到了98.51%,且响应时间仅为0.84 s,漏报率和误报率分别为1.23%和0.36%;该网络入侵检测模型能够实现高效的网络入侵检测,实时保障网络安全,实现网络入侵防御,为网络安全提供可靠的技术支持;该方法在网络攻防领域具有积极意义,为相关领域研究提供了新的思路。 展开更多
关键词 逃避行为 网络入侵 检测 LSTM SSA算法 CNN 强化学习
在线阅读 下载PDF
光纤传感网络混合式入侵行为实时检测研究 被引量:1
19
作者 陆思辰 王福军 《激光杂志》 北大核心 2025年第1期202-207,共6页
混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延... 混合式入侵行为往往在一个或多个局部位置出现,且在时间上存在一定的聚集性,无法很好地捕捉其复杂特征,为此提出光纤传感网络混合式入侵行为实时检测方法。以平均过零率和短时能量作为指标对某段信号进行分割处理,减少不断累加的处理延时,提取可能存在入侵行为的光纤传感信号。通过高阶谱分析、样本熵分析和奇异值分析进一步提取信号特征,构建并利用多层梯度下降法训练多个深度神经网络,将所提取的特征输入至对应深度神经网络中,经由Softmax函数输出混合式入侵行为检测结果,最后采用改进的DS证据理论关联融合各深度神经网络输出的检测结果,实现光纤传感网络混合式入侵行为实时检测。实验结果表明,所提方法入侵行为检测结果更准确、内存占用率和CPU使用率较低。 展开更多
关键词 光纤传感网络 混合式入侵行为 实时检测 深度神经网络 奇异值分解
原文传递
融合遗忘行为和学习能力的深度知识追踪模型
20
作者 冯文芳 刘杜奎 朱昶胜 《武汉大学学报(工学版)》 北大核心 2025年第2期285-291,共7页
现有的知识追踪方法大多对遗忘因素建模不够健全或者忽略了学习者的学习能力,针对这些问题,提出一种融合遗忘行为和学习能力的深度知识追踪模型,该模型综合考虑了学习者的遗忘行为和学习能力,采用深度学习的方法结合遗忘因素对学习者的... 现有的知识追踪方法大多对遗忘因素建模不够健全或者忽略了学习者的学习能力,针对这些问题,提出一种融合遗忘行为和学习能力的深度知识追踪模型,该模型综合考虑了学习者的遗忘行为和学习能力,采用深度学习的方法结合遗忘因素对学习者的学习能力进行建模。在线教育数据集上的实验表明,相较于现有的知识追踪模型,融合遗忘行为和学习能力的深度知识追踪模型具有较好的可解释性和预测性,证明了融合遗忘因素和学习者学习能力的知识追踪模型的有效性。 展开更多
关键词 知识追踪 深度神经网络 遗忘行为 学习能力 在线学习
原文传递
上一页 1 2 187 下一页 到第
使用帮助 返回顶部