期刊文献+
共找到4,301篇文章
< 1 2 216 >
每页显示 20 50 100
Improved Event-Triggered Adaptive Neural Network Control for Multi-agent Systems Under Denial-of-Service Attacks 被引量:1
1
作者 Huiyan ZHANG Yu HUANG +1 位作者 Ning ZHAO Peng SHI 《Artificial Intelligence Science and Engineering》 2025年第2期122-133,共12页
This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method... This paper addresses the consensus problem of nonlinear multi-agent systems subject to external disturbances and uncertainties under denial-ofservice(DoS)attacks.Firstly,an observer-based state feedback control method is employed to achieve secure control by estimating the system's state in real time.Secondly,by combining a memory-based adaptive eventtriggered mechanism with neural networks,the paper aims to approximate the nonlinear terms in the networked system and efficiently conserve system resources.Finally,based on a two-degree-of-freedom model of a vehicle affected by crosswinds,this paper constructs a multi-unmanned ground vehicle(Multi-UGV)system to validate the effectiveness of the proposed method.Simulation results show that the proposed control strategy can effectively handle external disturbances such as crosswinds in practical applications,ensuring the stability and reliable operation of the Multi-UGV system. 展开更多
关键词 multi-agent systems neural network DoS attacks memory-based adaptive event-triggered mechanism
在线阅读 下载PDF
Stackelberg game-based optimal secure control against hybrid attacks for networked control systems
2
作者 Wei Xiong Yi Dong Liubin Zhou 《Journal of Automation and Intelligence》 2025年第3期236-241,共6页
This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional m... This paper investigates the problem of optimal secure control for networked control systems under hybrid attacks.A control strategy based on the Stackelberg game framework is proposed,which differs from conventional methods by considering both denial-of-service(DoS)and false data injection(FDI)attacks simultaneously.Additionally,the stability conditions for the system under these hybrid attacks are established.It is technically challenging to design the control strategy by predicting attacker actions based on Stcakelberg game to ensure the system stability under hybrid attacks.Another technical difficulty lies in establishing the conditions for mean-square asymptotic stability due to the complexity of the attack scenarios Finally,simulations on an unstable batch reactor system under hybrid attacks demonstrate the effectiveness of the proposed strategy. 展开更多
关键词 Stackelberg game networked control systems Hybrid attacks DoS attack FDI attack
在线阅读 下载PDF
Wireless Sensor Network Modeling and Analysis for Attack Detection
3
作者 Tamara Zhukabayeva Vasily Desnitsky Assel Abdildayeva 《Computer Modeling in Engineering & Sciences》 2025年第8期2591-2625,共35页
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar... Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios. 展开更多
关键词 Wireless sensor network MODELING SECURITY attack DETECTION MONITORING
在线阅读 下载PDF
A survey of backdoor attacks and defenses:From deep neural networks to large language models
4
作者 Ling-Xin Jin Wei Jiang +5 位作者 Xiang-Yu Wen Mei-Yu Lin Jin-Yu Zhan Xing-Zhi Zhou Maregu Assefa Habtie Naoufel Werghi 《Journal of Electronic Science and Technology》 2025年第3期13-35,共23页
Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susce... Deep neural networks(DNNs)have found extensive applications in safety-critical artificial intelligence systems,such as autonomous driving and facial recognition systems.However,recent research has revealed their susceptibility to backdoors maliciously injected by adversaries.This vulnerability arises due to the intricate architecture and opacity of DNNs,resulting in numerous redundant neurons embedded within the models.Adversaries exploit these vulnerabilities to conceal malicious backdoor information within DNNs,thereby causing erroneous outputs and posing substantial threats to the efficacy of DNN-based applications.This article presents a comprehensive survey of backdoor attacks against DNNs and the countermeasure methods employed to mitigate them.Initially,we trace the evolution of the concept from traditional backdoor attacks to backdoor attacks against DNNs,highlighting the feasibility and practicality of generating backdoor attacks against DNNs.Subsequently,we provide an overview of notable works encompassing various attack and defense strategies,facilitating a comparative analysis of their approaches.Through these discussions,we offer constructive insights aimed at refining these techniques.Finally,we extend our research perspective to the domain of large language models(LLMs)and synthesize the characteristics and developmental trends of backdoor attacks and defense methods targeting LLMs.Through a systematic review of existing studies on backdoor vulnerabilities in LLMs,we identify critical open challenges in this field and propose actionable directions for future research. 展开更多
关键词 Backdoor attacks Backdoor defenses Deep neural networks Large language model
在线阅读 下载PDF
PIAFGNN:Property Inference Attacks against Federated Graph Neural Networks
5
作者 Jiewen Liu Bing Chen +2 位作者 Baolu Xue Mengya Guo Yuntao Xu 《Computers, Materials & Continua》 2025年第2期1857-1877,共21页
Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and so... Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local embeddings into a regression problem, using a regression model to generate the target graph node embeddings. By training shadow models and property classifiers, the attacker can infer the basic property information within the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting the model’s performance on mainly classification tasks. 展开更多
关键词 Federated graph neural networks GNNs privacy leakage regression model property inference attacks EMBEDDINGS
在线阅读 下载PDF
Ensemble Encoder-Based Attack Traffic Classification for Secure 5G Slicing Networks
6
作者 Min-Gyu Kim Hwankuk Kim 《Computer Modeling in Engineering & Sciences》 2025年第5期2391-2415,共25页
This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method u... This study proposes an efficient traffic classification model to address the growing threat of distributed denial-of-service(DDoS)attacks in 5th generation technology standard(5G)slicing networks.The proposed method utilizes an ensemble of encoder components from multiple autoencoders to compress and extract latent representations from high-dimensional traffic data.These representations are then used as input for a support vector machine(SVM)-based metadata classifier,enabling precise detection of attack traffic.This architecture is designed to achieve both high detection accuracy and training efficiency,while adapting flexibly to the diverse service requirements and complexity of 5G network slicing.The model was evaluated using the DDoS Datasets 2022,collected in a simulated 5G slicing environment.Experiments were conducted under both class-balanced and class-imbalanced conditions.In the balanced setting,the model achieved an accuracy of 89.33%,an F1-score of 88.23%,and an Area Under the Curve(AUC)of 89.45%.In the imbalanced setting(attack:normal 7:3),the model maintained strong robustness,=achieving a recall of 100%and an F1-score of 90.91%,demonstrating its effectiveness in diverse real-world scenarios.Compared to existing AI-based detection methods,the proposed model showed higher precision,better handling of class imbalance,and strong generalization performance.Moreover,its modular structure is well-suited for deployment in containerized network function(NF)environments,making it a practical solution for real-world 5G infrastructure.These results highlight the potential of the proposed approach to enhance both the security and operational resilience of 5G slicing networks. 展开更多
关键词 5G slicing networks attack traffic classification ensemble encoders autoencoder AI-based security
在线阅读 下载PDF
Adaptive regulation-based Mutual Information Camouflage Poisoning Attack in Graph Neural Networks
7
作者 Jihui Yin Taorui Yang +3 位作者 Yifei Sun Jianzhi Gao Jiangbo Lu Zhi-Hui Zhan 《Journal of Automation and Intelligence》 2025年第1期21-28,共8页
Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks ... Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks to generate a set of fake nodes,injecting them into a clean GNNs to poison the graph structure and evaluate the robustness of GNNs.In the attack process,the computation of new node connections and the attack loss are independent,which affects the attack on the GNN.To improve this,a Fake Node Camouflage Attack based on Mutual Information(FNCAMI)algorithm is proposed.By incorporating Mutual Information(MI)loss,the distribution of nodes injected into the GNNs become more similar to the original nodes,achieving better attack results.Since the loss ratios of GNNs and MI affect performance,we also design an adaptive weighting method.By adjusting the loss weights in real-time through rate changes,larger loss values are obtained,eliminating local optima.The feasibility,effectiveness,and stealthiness of this algorithm are validated on four real datasets.Additionally,we use both global and targeted attacks to test the algorithm’s performance.Comparisons with baseline attack algorithms and ablation experiments demonstrate the efficiency of the FNCAMI algorithm. 展开更多
关键词 Mutual information Adaptive weighting Poisoning attack Graph neural networks
在线阅读 下载PDF
A Study on the Inter-Pretability of Network Attack Prediction Models Based on Light Gradient Boosting Machine(LGBM)and SHapley Additive exPlanations(SHAP)
8
作者 Shuqin Zhang Zihao Wang Xinyu Su 《Computers, Materials & Continua》 2025年第6期5781-5809,共29页
The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively.In recent years,artificial int... The methods of network attacks have become increasingly sophisticated,rendering traditional cybersecurity defense mechanisms insufficient to address novel and complex threats effectively.In recent years,artificial intelligence has achieved significant progress in the field of network security.However,many challenges and issues remain,particularly regarding the interpretability of deep learning and ensemble learning algorithms.To address the challenge of enhancing the interpretability of network attack prediction models,this paper proposes a method that combines Light Gradient Boosting Machine(LGBM)and SHapley Additive exPlanations(SHAP).LGBM is employed to model anomalous fluctuations in various network indicators,enabling the rapid and accurate identification and prediction of potential network attack types,thereby facilitating the implementation of timely defense measures,the model achieved an accuracy of 0.977,precision of 0.985,recall of 0.975,and an F1 score of 0.979,demonstrating better performance compared to other models in the domain of network attack prediction.SHAP is utilized to analyze the black-box decision-making process of the model,providing interpretability by quantifying the contribution of each feature to the prediction results and elucidating the relationships between features.The experimental results demonstrate that the network attack predictionmodel based on LGBM exhibits superior accuracy and outstanding predictive capabilities.Moreover,the SHAP-based interpretability analysis significantly improves the model’s transparency and interpretability. 展开更多
关键词 Artificial intelligence network attack prediction light gradient boosting machine(LGBM) SHapley Additive exPlanations(SHAP) INTERPRETABILITY
在线阅读 下载PDF
Detecting and Mitigating Distributed Denial of Service Attacks in Software-Defined Networking
9
作者 Abdullah M.Alnajim Faisal Mohammed Alotaibi Sheroz Khan 《Computers, Materials & Continua》 2025年第6期4515-4535,共21页
Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited late... Distributed denial of service(DDoS)attacks are common network attacks that primarily target Internet of Things(IoT)devices.They are critical for emerging wireless services,especially for applications with limited latency.DDoS attacks pose significant risks to entrepreneurial businesses,preventing legitimate customers from accessing their websites.These attacks require intelligent analytics before processing service requests.Distributed denial of service(DDoS)attacks exploit vulnerabilities in IoT devices by launchingmulti-point distributed attacks.These attacks generate massive traffic that overwhelms the victim’s network,disrupting normal operations.The consequences of distributed denial of service(DDoS)attacks are typically more severe in software-defined networks(SDNs)than in traditional networks.The centralised architecture of these networks can exacerbate existing vulnerabilities,as these weaknesses may not be effectively addressed in this model.The preliminary objective for detecting and mitigating distributed denial of service(DDoS)attacks in software-defined networks(SDN)is to monitor traffic patterns and identify anomalies that indicate distributed denial of service(DDoS)attacks.It implements measures to counter the effects ofDDoS attacks,and ensure network reliability and availability by leveraging the flexibility and programmability of SDN to adaptively respond to threats.The authors present a mechanism that leverages the OpenFlow and sFlow protocols to counter the threats posed by DDoS attacks.The results indicate that the proposed model effectively mitigates the negative effects of DDoS attacks in an SDN environment. 展开更多
关键词 Software-defined networking(SDN) distributed denial of service(DDoS)attack sampling Flow(sFlow) OpenFlow OpenDaylight controller
在线阅读 下载PDF
A Probabilistic Trust Model and Control Algorithm to Protect 6G Networks against Malicious Data Injection Attacks in Edge Computing Environments 被引量:1
10
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期631-654,共24页
Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control l... Future 6G communications are envisioned to enable a large catalogue of pioneering applications.These will range from networked Cyber-Physical Systems to edge computing devices,establishing real-time feedback control loops critical for managing Industry 5.0 deployments,digital agriculture systems,and essential infrastructures.The provision of extensive machine-type communications through 6G will render many of these innovative systems autonomous and unsupervised.While full automation will enhance industrial efficiency significantly,it concurrently introduces new cyber risks and vulnerabilities.In particular,unattended systems are highly susceptible to trust issues:malicious nodes and false information can be easily introduced into control loops.Additionally,Denialof-Service attacks can be executed by inundating the network with valueless noise.Current anomaly detection schemes require the entire transformation of the control software to integrate new steps and can only mitigate anomalies that conform to predefined mathematical models.Solutions based on an exhaustive data collection to detect anomalies are precise but extremely slow.Standard models,with their limited understanding of mobile networks,can achieve precision rates no higher than 75%.Therefore,more general and transversal protection mechanisms are needed to detect malicious behaviors transparently.This paper introduces a probabilistic trust model and control algorithm designed to address this gap.The model determines the probability of any node to be trustworthy.Communication channels are pruned for those nodes whose probability is below a given threshold.The trust control algorithmcomprises three primary phases,which feed themodel with three different probabilities,which are weighted and combined.Initially,anomalous nodes are identified using Gaussian mixture models and clustering technologies.Next,traffic patterns are studied using digital Bessel functions and the functional scalar product.Finally,the information coherence and content are analyzed.The noise content and abnormal information sequences are detected using a Volterra filter and a bank of Finite Impulse Response filters.An experimental validation based on simulation tools and environments was carried out.Results show the proposed solution can successfully detect up to 92%of malicious data injection attacks. 展开更多
关键词 6G networks noise injection attacks Gaussian mixture model Bessel function traffic filter Volterra filter
在线阅读 下载PDF
Cluster DetectionMethod of Endogenous Security Abnormal Attack Behavior in Air Traffic Control Network 被引量:1
11
作者 Ruchun Jia Jianwei Zhang +2 位作者 Yi Lin Yunxiang Han Feike Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2523-2546,共24页
In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set f... In order to enhance the accuracy of Air Traffic Control(ATC)cybersecurity attack detection,in this paper,a new clustering detection method is designed for air traffic control network security attacks.The feature set for ATC cybersecurity attacks is constructed by setting the feature states,adding recursive features,and determining the feature criticality.The expected information gain and entropy of the feature data are computed to determine the information gain of the feature data and reduce the interference of similar feature data.An autoencoder is introduced into the AI(artificial intelligence)algorithm to encode and decode the characteristics of ATC network security attack behavior to reduce the dimensionality of the ATC network security attack behavior data.Based on the above processing,an unsupervised learning algorithm for clustering detection of ATC network security attacks is designed.First,determine the distance between the clustering clusters of ATC network security attack behavior characteristics,calculate the clustering threshold,and construct the initial clustering center.Then,the new average value of all feature objects in each cluster is recalculated as the new cluster center.Second,it traverses all objects in a cluster of ATC network security attack behavior feature data.Finally,the cluster detection of ATC network security attack behavior is completed by the computation of objective functions.The experiment took three groups of experimental attack behavior data sets as the test object,and took the detection rate,false detection rate and recall rate as the test indicators,and selected three similar methods for comparative test.The experimental results show that the detection rate of this method is about 98%,the false positive rate is below 1%,and the recall rate is above 97%.Research shows that this method can improve the detection performance of security attacks in air traffic control network. 展开更多
关键词 Air traffic control network security attack behavior cluster detection behavioral characteristics information gain cluster threshold automatic encoder
在线阅读 下载PDF
Evaluating the Efficacy of Latent Variables in Mitigating Data Poisoning Attacks in the Context of Bayesian Networks:An Empirical Study
12
作者 Shahad Alzahrani Hatim Alsuwat Emad Alsuwat 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期1635-1654,共20页
Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent ... Bayesian networks are a powerful class of graphical decision models used to represent causal relationships among variables.However,the reliability and integrity of learned Bayesian network models are highly dependent on the quality of incoming data streams.One of the primary challenges with Bayesian networks is their vulnerability to adversarial data poisoning attacks,wherein malicious data is injected into the training dataset to negatively influence the Bayesian network models and impair their performance.In this research paper,we propose an efficient framework for detecting data poisoning attacks against Bayesian network structure learning algorithms.Our framework utilizes latent variables to quantify the amount of belief between every two nodes in each causal model over time.We use our innovative methodology to tackle an important issue with data poisoning assaults in the context of Bayesian networks.With regard to four different forms of data poisoning attacks,we specifically aim to strengthen the security and dependability of Bayesian network structure learning techniques,such as the PC algorithm.By doing this,we explore the complexity of this area and offer workablemethods for identifying and reducing these sneaky dangers.Additionally,our research investigates one particular use case,the“Visit to Asia Network.”The practical consequences of using uncertainty as a way to spot cases of data poisoning are explored in this inquiry,which is of utmost relevance.Our results demonstrate the promising efficacy of latent variables in detecting and mitigating the threat of data poisoning attacks.Additionally,our proposed latent-based framework proves to be sensitive in detecting malicious data poisoning attacks in the context of stream data. 展开更多
关键词 Bayesian networks data poisoning attacks latent variables structure learning algorithms adversarial attacks
在线阅读 下载PDF
Threshold-Based Software-Defined Networking(SDN)Solution for Healthcare Systems against Intrusion Attacks
13
作者 Laila M.Halman Mohammed J.F.Alenazi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1469-1483,共15页
The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are ... The healthcare sector holds valuable and sensitive data.The amount of this data and the need to handle,exchange,and protect it,has been increasing at a fast pace.Due to their nature,software-defined networks(SDNs)are widely used in healthcare systems,as they ensure effective resource utilization,safety,great network management,and monitoring.In this sector,due to the value of thedata,SDNs faceamajor challengeposed byawide range of attacks,such as distributed denial of service(DDoS)and probe attacks.These attacks reduce network performance,causing the degradation of different key performance indicators(KPIs)or,in the worst cases,a network failure which can threaten human lives.This can be significant,especially with the current expansion of portable healthcare that supports mobile and wireless devices for what is called mobile health,or m-health.In this study,we examine the effectiveness of using SDNs for defense against DDoS,as well as their effects on different network KPIs under various scenarios.We propose a threshold-based DDoS classifier(TBDC)technique to classify DDoS attacks in healthcare SDNs,aiming to block traffic considered a hazard in the form of a DDoS attack.We then evaluate the accuracy and performance of the proposed TBDC approach.Our technique shows outstanding performance,increasing the mean throughput by 190.3%,reducing the mean delay by 95%,and reducing packet loss by 99.7%relative to normal,with DDoS attack traffic. 展开更多
关键词 network resilience network management attack prediction software defined networking(SDN) distributed denial of service(DDoS) healthcare
在线阅读 下载PDF
Secure and Reliable Routing in the Internet of Vehicles Network:AODV-RL with BHA Attack Defense
14
作者 Nadeem Ahmed Khalid Mohammadani +3 位作者 Ali Kashif Bashir Marwan Omar Angel Jones Fayaz Hassan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期633-659,共27页
Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad h... Wireless technology is transforming the future of transportation through the development of the Internet of Vehicles(IoV).However,intricate security challenges are intertwinedwith technological progress:Vehicular ad hoc Networks(VANETs),a core component of IoV,face security issues,particularly the Black Hole Attack(BHA).This malicious attack disrupts the seamless flow of data and threatens the network’s overall reliability;also,BHA strategically disrupts communication pathways by dropping data packets from legitimate nodes altogether.Recognizing the importance of this challenge,we have introduced a new solution called ad hoc On-Demand Distance Vector-Reputation-based mechanism Local Outlier Factor(AODV-RL).The significance of AODVRL lies in its unique approach:it verifies and confirms the trustworthiness of network components,providing robust protection against BHA.An additional safety layer is established by implementing the Local Outlier Factor(LOF),which detects and addresses abnormal network behaviors.Rigorous testing of our solution has revealed its remarkable ability to enhance communication in VANETs.Specifically,Our experimental results achieve message delivery ratios of up to 94.25%andminimal packet loss ratios of just 0.297%.Based on our experimental results,the proposedmechanismsignificantly improves VANET communication reliability and security.These results promise a more secure and dependable future for IoV,capable of transforming transportation safety and efficiency. 展开更多
关键词 Black hole attack IoV vehicular ad hoc network AODV routing protocol
在线阅读 下载PDF
NFHP-RN:AMethod of Few-Shot Network Attack Detection Based on the Network Flow Holographic Picture-ResNet
15
作者 Tao Yi Xingshu Chen +2 位作者 Mingdong Yang Qindong Li Yi Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期929-955,共27页
Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to ... Due to the rapid evolution of Advanced Persistent Threats(APTs)attacks,the emergence of new and rare attack samples,and even those never seen before,make it challenging for traditional rule-based detection methods to extract universal rules for effective detection.With the progress in techniques such as transfer learning and meta-learning,few-shot network attack detection has progressed.However,challenges in few-shot network attack detection arise from the inability of time sequence flow features to adapt to the fixed length input requirement of deep learning,difficulties in capturing rich information from original flow in the case of insufficient samples,and the challenge of high-level abstract representation.To address these challenges,a few-shot network attack detection based on NFHP(Network Flow Holographic Picture)-RN(ResNet)is proposed.Specifically,leveraging inherent properties of images such as translation invariance,rotation invariance,scale invariance,and illumination invariance,network attack traffic features and contextual relationships are intuitively represented in NFHP.In addition,an improved RN network model is employed for high-level abstract feature extraction,ensuring that the extracted high-level abstract features maintain the detailed characteristics of the original traffic behavior,regardless of changes in background traffic.Finally,a meta-learning model based on the self-attention mechanism is constructed,achieving the detection of novel APT few-shot network attacks through the empirical generalization of high-level abstract feature representations of known-class network attack behaviors.Experimental results demonstrate that the proposed method can learn high-level abstract features of network attacks across different traffic detail granularities.Comparedwith state-of-the-artmethods,it achieves favorable accuracy,precision,recall,and F1 scores for the identification of unknown-class network attacks through cross-validation onmultiple datasets. 展开更多
关键词 APT attacks spatial pyramid pooling NFHP(network flow holo-graphic picture) ResNet self-attention mechanism META-LEARNING
在线阅读 下载PDF
Gated Neural Network-Based Unsteady Aerodynamic Modeling for Large Angles of Attack
16
作者 DENG Yongtao CHENG Shixin MI Baigang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期432-443,共12页
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ... Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling. 展开更多
关键词 large angle of attack unsteady aerodynamic modeling gated neural networks generalization ability
在线阅读 下载PDF
Secure Channel Estimation Using Norm Estimation Model for 5G Next Generation Wireless Networks
17
作者 Khalil Ullah Song Jian +4 位作者 Muhammad Naeem Ul Hassan Suliman Khan Mohammad Babar Arshad Ahmad Shafiq Ahmad 《Computers, Materials & Continua》 SCIE EI 2025年第1期1151-1169,共19页
The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of user... The emergence of next generation networks(NextG),including 5G and beyond,is reshaping the technological landscape of cellular and mobile networks.These networks are sufficiently scaled to interconnect billions of users and devices.Researchers in academia and industry are focusing on technological advancements to achieve highspeed transmission,cell planning,and latency reduction to facilitate emerging applications such as virtual reality,the metaverse,smart cities,smart health,and autonomous vehicles.NextG continuously improves its network functionality to support these applications.Multiple input multiple output(MIMO)technology offers spectral efficiency,dependability,and overall performance in conjunctionwithNextG.This article proposes a secure channel estimation technique in MIMO topology using a norm-estimation model to provide comprehensive insights into protecting NextG network components against adversarial attacks.The technique aims to create long-lasting and secure NextG networks using this extended approach.The viability of MIMO applications and modern AI-driven methodologies to combat cybersecurity threats are explored in this research.Moreover,the proposed model demonstrates high performance in terms of reliability and accuracy,with a 20%reduction in the MalOut-RealOut-Diff metric compared to existing state-of-the-art techniques. 展开更多
关键词 Next generation networks massive mimo communication network artificial intelligence 5G adversarial attacks channel estimation information security
在线阅读 下载PDF
Adaptive neural network event-triggered secure formation control of nonholonomic mobile robots subject to deception attacks
18
作者 Kai Wang Wei Wu Shaocheng Tong 《Journal of Automation and Intelligence》 2024年第4期260-268,共9页
This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonl... This paper investigates the adaptive neural network(NN)event-triggered secure formation control problem for nonholonomic mobile robots(NMRs)subject to deception attacks.The NNs are employed to approximate unknown nonlinear functions in robotic dynamics.Since the transmission channel from sensor-to-controller is vulnerable to deception attacks,a NN estimation technique is introduced to estimate the unknown deception attacks.In order to alleviate the amount of communication between controller-and-actuator,an event-triggered mechanism with relative threshold strategy is established.Then,an adaptive NN event-triggered secure formation control method is proposed.It is proved that all closed-loop signals of controlled systems are bounded and the formation tracking errors converge a neighborhood of the origin in the presence of deception attacks.The comparative simulations illustrate the effectiveness of the proposed secure formation control scheme. 展开更多
关键词 Nonholonomic mobile robots Deception attacks Neural network(NN)estimation technique Secure formation control Event-triggered mechanism
在线阅读 下载PDF
DSGNN:Dual-Shield Defense for Robust Graph Neural Networks
19
作者 Xiaohan Chen Yuanfang Chen +2 位作者 Gyu Myoung Lee Noel Crespi Pierluigi Siano 《Computers, Materials & Continua》 2025年第10期1733-1750,共18页
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t... Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 展开更多
关键词 Graph neural networks adversarial attacks dual-shield defense certified robustness node classification
在线阅读 下载PDF
Oversampling-Enhanced Feature Fusion-Based Hybrid ViT-1DCNN Model for Ransomware Cyber Attack Detection
20
作者 Muhammad Armghan Latif Zohaib Mushtaq +4 位作者 Saifur Rahman Saad Arif Salim Nasar Faraj Mursal Muhammad Irfan Haris Aziz 《Computer Modeling in Engineering & Sciences》 2025年第2期1667-1695,共29页
Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutiona... Ransomware attacks pose a significant threat to critical infrastructures,demanding robust detection mechanisms.This study introduces a hybrid model that combines vision transformer(ViT)and one-dimensional convolutional neural network(1DCNN)architectures to enhance ransomware detection capabilities.Addressing common challenges in ransomware detection,particularly dataset class imbalance,the synthetic minority oversampling technique(SMOTE)is employed to generate synthetic samples for minority class,thereby improving detection accuracy.The integration of ViT and 1DCNN through feature fusion enables the model to capture both global contextual and local sequential features,resulting in comprehensive ransomware classification.Tested on the UNSW-NB15 dataset,the proposed ViT-1DCNN model achieved 98%detection accuracy with precision,recall,and F1-score metrics surpassing conventional methods.This approach not only reduces false positives and negatives but also offers scalability and robustness for real-world cybersecurity applications.The results demonstrate the model’s potential as an effective tool for proactive ransomware detection,especially in environments where evolving threats require adaptable and high-accuracy solutions. 展开更多
关键词 Ransomware attacks CYBERSECURITY vision transformer convolutional neural network feature fusion ENCRYPTION threat detection
在线阅读 下载PDF
上一页 1 2 216 下一页 到第
使用帮助 返回顶部