期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FEW-NNN: A Fuzzy Entropy Weighted Natural Nearest Neighbor Method for Flow-Based Network Traffic Attack Detection 被引量:7
1
作者 Liangchen Chen Shu Gao +2 位作者 Baoxu Liu Zhigang Lu Zhengwei Jiang 《China Communications》 SCIE CSCD 2020年第5期151-167,共17页
Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the foc... Attacks such as APT usually hide communication data in massive legitimate network traffic, and mining structurally complex and latent relationships among flow-based network traffic to detect attacks has become the focus of many initiatives. Effectively analyzing massive network security data with high dimensions for suspicious flow diagnosis is a huge challenge. In addition, the uneven distribution of network traffic does not fully reflect the differences of class sample features, resulting in the low accuracy of attack detection. To solve these problems, a novel approach called the fuzzy entropy weighted natural nearest neighbor(FEW-NNN) method is proposed to enhance the accuracy and efficiency of flowbased network traffic attack detection. First, the FEW-NNN method uses the Fisher score and deep graph feature learning algorithm to remove unimportant features and reduce the data dimension. Then, according to the proposed natural nearest neighbor searching algorithm(NNN_Searching), the density of data points, each class center and the smallest enclosing sphere radius are determined correspondingly. Finally, a fuzzy entropy weighted KNN classification method based on affinity is proposed, which mainly includes the following three steps: 1、 the feature weights of samples are calculated based on fuzzy entropy values, 2、 the fuzzy memberships of samples are determined based on affinity among samples, and 3、 K-neighbors are selected according to the class-conditional weighted Euclidean distance, the fuzzy membership value of the testing sample is calculated based on the membership of k-neighbors, and then all testing samples are classified according to the fuzzy membership value of the samples belonging to each class;that is, the attack type is determined. The method has been applied to the problem of attack detection and validated based on the famous KDD99 and CICIDS-2017 datasets. From the experimental results shown in this paper, it is observed that the FEW-NNN method improves the accuracy and efficiency of flow-based network traffic attack detection. 展开更多
关键词 fuzzy entropy weighted KNN network attack detection fuzzy membership natural nearest neighbor network security intrusion detection system
在线阅读 下载PDF
Bayes-Based ARP Attack Detection Algorithm for Cloud Centers 被引量:1
2
作者 Huan Ma Hao Ding +3 位作者 Yang Yang Zhenqiang Mi James Yifei Yang Zenggang Xiong 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第1期17-28,共12页
To address the issue of internal network security, Software-Defined Network(SDN) technology has been introduced to large-scale cloud centers because it not only improves network performance but also deals with netwo... To address the issue of internal network security, Software-Defined Network(SDN) technology has been introduced to large-scale cloud centers because it not only improves network performance but also deals with network attacks. To prevent man-in-the-middle and denial of service attacks caused by an address resolution protocol bug in an SDN-based cloud center, this study proposed a Bayes-based algorithm to calculate the probability of a host being an attacker and further presented a detection model based on the algorithm. Experiments were conducted to validate this method. 展开更多
关键词 cloud computing Bayes ARP attack detection software-defined network
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部