Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout a...Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.展开更多
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based sim...To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.展开更多
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ...Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.展开更多
Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involv...Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven...Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).展开更多
Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at...Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.展开更多
Thymus quinquecostatus Celak.,a traditional aromatic edible plant from Lamiaceae,is widely used as food additive,food condiment,spice,and herbal teas.Polyphenol-rich fraction of T.quinquecostatus(PRF)has been proven t...Thymus quinquecostatus Celak.,a traditional aromatic edible plant from Lamiaceae,is widely used as food additive,food condiment,spice,and herbal teas.Polyphenol-rich fraction of T.quinquecostatus(PRF)has been proven to be effective protective effect for cerebral ischemia reperfusion injury(CIRI)in our previous study.In this study,we developed a novel“Gut flora-Compound-Target-Pathway”(GCTP)network based on network pharmacology coupled with gastrointestinal metabolism for screening bio-active components,key targets and gut floras through the classical technique for order preference by similarity to ideal solution(TOPSIS).This compensates for the lack of gut floras and gastrointestinal metabolism in network pharmacology.Firstly,four incubation models covering simulated gastric juice,simulated intestinal juice,gut floras of normal and transient middle cerebral artery occlusion(tMCAO)rat in vitro were applied to PRF.The 109 proto-components and 64 metabolites were elucidated by ultra-high performance liquid chromatography Q exactive orbitrap-mass spectrometry(UPLC-QE-Orbitrap-MS).Then,the key targets of matrix metalloproteinase 9(MMP9),prostaglandin-endoperoxide synthase 2(PTGS2),tyrosine-protein kinase fyn(FYN),estrogen receptor 1(ESR1),amyloid precursor protein(APP),and epidermal growth factor receptor(EGFR),and gut floras of Enterococcus avium LY1 were selected.Moreover,the selected key proto components were rosmarinic acid,daidzein,quercetin,luteolin,apigenin,methyl rosmarinate,kaempferol,luteoloside,and caffeic acid,and the key metabolites were isokaempferide,isorhamnetin,isoquercetin,and mangiferin.Binding of compounds to the key proteins was analyzed by molecular docking,and also verified though an 2,2'-azobis(2-amidinopropane)dihydrochloride(AAPH)induced oxidative stress zebrafish model and real-time quantitative polymerase chain reaction(RT-qPCR)assays.This study provides a new idea and a better understanding of PRF for its protective effects on CIRI and its underlying mechanisms.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV...Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses.展开更多
Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall c...Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall competitive strength.Consequently,China proposed a strategy for the integration of industrialization and informatization,optimizing and adjusting its industrial structure to swiftly achieve transformation and upgrading in the Industry 4.0 era,thereby enhancing the sophistication of intelligent industrial control systems.The distributed control system in a nuclear power plant functions as an industrial control system,overseeing the operational status of the physical process.Its ability to ensure safe and reliable operation is directly linked to nuclear safety and the cybersecurity of the facility.The management of network security in distributed control systems(DCS)is crucial for achieving this objective.Due to the varying network settings and parameters of the DCS implemented in each nuclear power plant,the network security status of the system sometimes diverges from expectations.During system operation,it will undoubtedly encounter network security issues.Consequently,nuclear power plants utilize the technical criteria outlined in GB/T 22239 to formulate a network security management program aimed at enhancing the operational security of DCS within these facilities.This study utilizes existing network security regulations and standards as a reference to analyze the network security control standards based on the nuclear power plant’s control system.It delineates the fundamental requirements for network security management,facilitating integration with the entire life cycle of the research,development,and application of the nuclear power plant’s distributed control system,thereby establishing a network security management methodology that satisfies the control requirements of the nuclear power plant.Initially,it presents DCS and network security management,outlines current domestic and international network security legislation and standards,and specifies the standards pertinent to the administration of DCS in nuclear power plants.Secondly,the design of network security management for DCS is executed in conjunction with the specific context of nuclear power plants.This encompasses the deployment of network security apparatus,validation of the network security management strategy,and optimization adjustments.Consequently,recommendations beneficial to the network security management of nuclear power plants are compiled,aimed at establishing a management system and incorporating the concept of full life cycle management,which is predicated on system requirements,system design,and both software and hardware considerations.Conversely,it presents the notion of comprehensive life cycle management and suggests network security management strategies encompassing system requirements,system architecture,detailed hardware and software design and implementation,procurement,internal system integration,system validation and acceptance testing,system installation,operational maintenance,system modifications,and decommissioning.We will consistently enhance the performance and functionality of DCS in nuclear power plants,establish a safe and secure operational environment,and thereby facilitate the implementation of DCS in nuclear facilities while ensuring robust network security in the future.展开更多
Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability ...Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability of sensing tasks and ultimately affect the long-term revenue of the infrastructure providers.In response to these problems,this paper proposes an efficient virtual network embedding algorithm with a reliable service guarantee.Based on the topological attributes of nodes,a method for evaluating the physical network resource importance degree is proposed,and the nodes with rich resources are selected to improve embedding efficiency.Then,a method for evaluating the physical network reliability degree is proposed to predict the probability of mobile sensors providing uninterrupted services.The simulation results show that the proposed algorithm improves the acceptance rate of virtual sensor networks(VSN)embedding requests and the long-term revenue of the infrastructure providers.展开更多
Soybean is widely used in diets,and numerous reports have highlighted its antioxidant properties.However,constructing a methodology for rapid identifying and predicting a series of antioxidant active ingredients in So...Soybean is widely used in diets,and numerous reports have highlighted its antioxidant properties.However,constructing a methodology for rapid identifying and predicting a series of antioxidant active ingredients in Soybean presents certain challenges.Therefore,we introduced the spectrum-effect relationship-ingredient knockout identification technique to identify a series of antioxidant active ingredients in soybean.By combining untargeted metabolomics with network pharmacology,we predicted the antioxidant active ingredients and their target sites.We successfully identified 4 antioxidant active compounds(daidzein,genistein,daidzein,and glycitin)and 10 corresponding antioxidant targets(epidermal growth factor receptor(EGFR),estrogen receptor 1(ESR1),steroid receptor coactivator(SRC),tumor necrosis factor(TNF),kinase insert domain receptor(KDR),AKT serine/threonine kinase 1(AKT1),growth factor receptor bound protein 2(GRB2),signal transducer and activator of transcription1(STAT1),mitogen-activated protein kinase 8(MAPK8),B-cell lymphoma-2(BCL2))by our analysis.The validation results from cell experiments revealed that glycitin exhibited the best antioxidant activity and significantly influenced the expression of EGFR and the proteins associated with nuclear factor erythroid 2-related factor 2/NAD(P)H quinone dehydrogenase 1(NRF2/NQO1)signaling pathways.These findings were consistent with the predicted outcomes and were further confirmed in a zebrafish model.It suggests that glycitin may exert antioxidant effects by regulating the expression of EGFR,NRF2,and NQO1 proteins.The results demonstrate that a rapid analytical method for determining antioxidant activity was established.展开更多
A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves...A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation.展开更多
In order to improve the deep learning training efficiency of the large reflector antenna active adjustment technique,this paper synthesizes the characteristic that each actuator can only adjust the panel connected to ...In order to improve the deep learning training efficiency of the large reflector antenna active adjustment technique,this paper synthesizes the characteristic that each actuator can only adjust the panel connected to it,and proposes a divided-ring antenna active adjustment deep learning training modeling method.The method organizes panel node data according to actuator ring positions,using panel displacements as input features and actuator adjustments as output labels.Through systematic sorting,reorganization,and normalization,the ring-divided data are transformed into grid-structured tensors suitable for convolutional processing.Multi-layer convolutional neural networks are then constructed for surface adjustment prediction,optimized through a hybrid strategy combining simulated annealing and the Adam algorithm.Through the dataset divided-ring preprocessing,active adjustment neural network construction and model training for the case of an 8 m reflector antenna,the analytical results show that the proposed method can effectively shorten the training time,and the final model's prediction accuracy is greatly improved,which demonstrates the feasibility and effectiveness of the proposed method.展开更多
To address uncertainties in satellite orbit error prediction,this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system(BDS).Building o...To address uncertainties in satellite orbit error prediction,this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system(BDS).Building on ephemeris data and perturbation corrections,two new models are proposed:attention-enhanced BPNN(AEBP)and Transformer-ResNet-BiLSTM(TR-BiLSTM).These models effectively capture both local and global dependencies in satellite orbit data.To further enhance prediction accuracy and stability,the outputs of these two models were integrated using the gradient boosting decision tree(GBDT)ensemble learning method,which was optimized through a grid search.The main contribution of this approach is the synergistic combination of deep learning models and GBDT,which significantly improves both the accuracy and robustness of satellite orbit predictions.This model was validated using broadcast ephemeris data from the BDS-3 MEO and inclined geosynchronous orbit(IGSO)satellites.The results show that the proposed method achieves an error correction rate of 65.4%.This ensemble learning-based approach offers a highly effective solution for high-precision and stable satellite orbit predictions.展开更多
With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks e...With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks environment poses challenges,including frequent base station handoffs,which significantly degrade wireless network transmission performance.Improving transmission efficiency in high-speed mobile networks and optimizing spatiotemporal wireless resource allocation to enhance passengers’media experiences are key research priorities.To address these issues,we propose an Adaptive Cross-Layer Optimization Transmission Method with Environment Awareness(ACOTM-EA)tailored for high-speed rail streaming media.Within this framework,we develop a channel quality prediction model utilizing Kalman filtering and an algorithm to identify packet loss causes.Additionally,we introduce a proactive base station handoffstrategy to minimize handoffrelated disruptions and optimize resource distribution across adjacent base stations.Moreover,this study presents a wireless resource allocation approach based on an enhanced genetic algorithm,coupled with an adaptive bitrate selection mechanism,to maximize passenger Quality of Experience(QoE).To evaluate the proposed method,we designed a simulation experiment and compared ACOTM-EA with established algorithms.Results indicate that ACOTM-EA improves throughput by 11%and enhances passengers’media experience by 5%.展开更多
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation....For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.展开更多
Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagon...Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52271317 and 52071149)the Fundamental Research Funds for the Central Universities(HUST:2019kfy XJJS007)。
文摘To address the problems of low accuracy by the CONWEP model and poor efficiency by the Coupled Eulerian-Lagrangian(CEL)method in predicting close-range air blast loads of cylindrical charges,a neural network-based simulation(NNS)method with higher accuracy and better efficiency was proposed.The NNS method consisted of three main steps.First,the parameters of blast loads,including the peak pressures and impulses of cylindrical charges with different aspect ratios(L/D)at different stand-off distances and incident angles were obtained by two-dimensional numerical simulations.Subsequently,incident shape factors of cylindrical charges with arbitrary aspect ratios were predicted by a neural network.Finally,reflected shape factors were derived and implemented into the subroutine of the ABAQUS code to modify the CONWEP model,including modifications of impulse and overpressure.The reliability of the proposed NNS method was verified by related experimental results.Remarkable accuracy improvement was acquired by the proposed NNS method compared with the unmodified CONWEP model.Moreover,huge efficiency superiority was obtained by the proposed NNS method compared with the CEL method.The proposed NNS method showed good accuracy when the scaled distance was greater than 0.2 m/kg^(1/3).It should be noted that there is no need to generate a new dataset again since the blast loads satisfy the similarity law,and the proposed NNS method can be directly used to simulate the blast loads generated by different cylindrical charges.The proposed NNS method with high efficiency and accuracy can be used as an effective method to analyze the dynamic response of structures under blast loads,and it has significant application prospects in designing protective structures.
基金supported by the National Natural Science Foundation of China(Grant No.42076214)Natural Science Foundation of Shandong Province(Grant No.ZR2024QD057).
文摘Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.
基金Supported by National Natural Science Foundation of China(Grant Nos.52222508 and 52335011)。
文摘Heat dissipation performance is critical to the design of high-end equipment,such as integrated chips and high-precision machine tools.Owing to the advantages of artificial intelligence in solving complex tasks involving a large number of variables,researchers have exploited deep learning to expedite the optimization of material properties,such as the heat dissipation of solid isotropic materials with penalization(SIMP).However,because the approach is limited by discrete datasets and labeled training forms,ensuring the continuous adaptation of the condition domain and maintaining the stability of the design structure remain major challenges in the current intelligent design methodology for thermally conductive structures.In this study,we propose an innovative intelligent design fram-ework integrating Conditional Deep Convolutional Generative Adversarial Networks(CDCGAN)with SIMP,capable of creating topology structures that meet prescribed thermal conduction performance.This proposed design strategy significantly reduces the computational time required to solve symmetric and random heat sink problems compared with existing design approaches and is approximately 98%faster than standard SIMP methods and 55.5%faster than conventional deep-learning-based methods.In addition,we benchmarked the design performance of the proposed framework against theoretical structural designs via experimental measurements.We observed a 50.1%reduction in the average temperature and a 28.2%reduction in the highest temperature in our designed topology compared with those theoretical structure designs.
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
基金supported by the National Natural Science Foundation of China(Grant No.U2241263)the fellowship of China Postdoctoral Science Foundation(Grant No.2024M750310).
文摘Numerical simulation plays an important role in the dynamic analysis of multibody system.With the rapid development of computer science,the numerical solution technology has been further developed.Recently,data-driven method has become a very popular computing method.However,due to lack of necessary mechanism information of the traditional pure data-driven methods based on neural network,its numerical accuracy cannot be guaranteed for strong nonlinear system.Therefore,this work proposes a mechanism-data hybrid-driven strategy for solving nonlinear multibody system based on physics-informed neural network to overcome the limitation of traditional data-driven methods.The strategy proposed in this paper introduces scaling coefficients to introduce the dynamic model of multibody system into neural network,ensuring that the training results of neural network conform to the mechanics principle of the system,thereby ensuring the good reliability of the data-driven method.Finally,the stability,generalization ability and numerical accuracy of the proposed method are discussed and analyzed using three typical multibody systems,and the constrained default situations can be controlled within the range of 10^(-2)-10^(-4).
文摘Using a modified subgradient extragradient algorithm, this paper proposed a novel approach to solving a supply chain network equilibrium model. The method extends the scope of optimisation and improves the accuracy at each iteration by incorporating adaptive parameter selection and a more general subgradient projection operator. The advantages of the proposed method are highlighted by the proof of strong convergence presented in the paper. Several concrete examples are given to demonstrate the effectiveness of the algorithm, with comparisons illustrating its superior CPU running time compared to alternative techniques. The practical applicability of the algorithm is also demonstrated by applying it to a realistic supply chain network model.
基金supported by the Key Research and Development Project of Ningxia Hui Autonomous Region(2020BFG03007).
文摘Thymus quinquecostatus Celak.,a traditional aromatic edible plant from Lamiaceae,is widely used as food additive,food condiment,spice,and herbal teas.Polyphenol-rich fraction of T.quinquecostatus(PRF)has been proven to be effective protective effect for cerebral ischemia reperfusion injury(CIRI)in our previous study.In this study,we developed a novel“Gut flora-Compound-Target-Pathway”(GCTP)network based on network pharmacology coupled with gastrointestinal metabolism for screening bio-active components,key targets and gut floras through the classical technique for order preference by similarity to ideal solution(TOPSIS).This compensates for the lack of gut floras and gastrointestinal metabolism in network pharmacology.Firstly,four incubation models covering simulated gastric juice,simulated intestinal juice,gut floras of normal and transient middle cerebral artery occlusion(tMCAO)rat in vitro were applied to PRF.The 109 proto-components and 64 metabolites were elucidated by ultra-high performance liquid chromatography Q exactive orbitrap-mass spectrometry(UPLC-QE-Orbitrap-MS).Then,the key targets of matrix metalloproteinase 9(MMP9),prostaglandin-endoperoxide synthase 2(PTGS2),tyrosine-protein kinase fyn(FYN),estrogen receptor 1(ESR1),amyloid precursor protein(APP),and epidermal growth factor receptor(EGFR),and gut floras of Enterococcus avium LY1 were selected.Moreover,the selected key proto components were rosmarinic acid,daidzein,quercetin,luteolin,apigenin,methyl rosmarinate,kaempferol,luteoloside,and caffeic acid,and the key metabolites were isokaempferide,isorhamnetin,isoquercetin,and mangiferin.Binding of compounds to the key proteins was analyzed by molecular docking,and also verified though an 2,2'-azobis(2-amidinopropane)dihydrochloride(AAPH)induced oxidative stress zebrafish model and real-time quantitative polymerase chain reaction(RT-qPCR)assays.This study provides a new idea and a better understanding of PRF for its protective effects on CIRI and its underlying mechanisms.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金supported in part by National Natural Science Foundation of China(62271096,U20A20157)Natural Science Foundation of Chongqing,China(cstc2020jcyj-zdxmX0024,CSTB2022NSCQMSX0600)+5 种基金University Innovation Research Group of Chongqing(CXQT20017)Program for Innovation Team Building at Institutions of Higher Education in Chongqing(CXTDX201601020)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202000626)Youth Innovation Group Support Program of ICE Discipline of CQUPT(SCIE-QN-2022-04)the Science and Technology Research Program of Chongqing Municipal Education Commission under Grant KJQN202000626Chongqing Municipal Technology Innovation and Application Development Special Key Project(cstc2020jscx-dxwtBX0053)。
文摘Cyber-Physical Networks(CPN)are comprehensive systems that integrate information and physical domains,and are widely used in various fields such as online social networking,smart grids,and the Internet of Vehicles(IoV).With the increasing popularity of digital photography and Internet technology,more and more users are sharing images on CPN.However,many images are shared without any privacy processing,exposing hidden privacy risks and making sensitive content easily accessible to Artificial Intelligence(AI)algorithms.Existing image sharing methods lack fine-grained image sharing policies and cannot protect user privacy.To address this issue,we propose a social relationship-driven privacy customization protection model for publishers and co-photographers.We construct a heterogeneous social information network centered on social relationships,introduce a user intimacy evaluation method with time decay,and evaluate privacy levels considering user interest similarity.To protect user privacy while maintaining image appreciation,we design a lightweight face-swapping algorithm based on Generative Adversarial Network(GAN)to swap faces that need to be protected.Our proposed method minimizes the loss of image utility while satisfying privacy requirements,as shown by extensive theoretical and simulation analyses.
文摘Given the grave local and international network security landscape,a national strategic level analysis indicates that the modernization and advancement within the Industry 4.0 era are closely correlated with overall competitive strength.Consequently,China proposed a strategy for the integration of industrialization and informatization,optimizing and adjusting its industrial structure to swiftly achieve transformation and upgrading in the Industry 4.0 era,thereby enhancing the sophistication of intelligent industrial control systems.The distributed control system in a nuclear power plant functions as an industrial control system,overseeing the operational status of the physical process.Its ability to ensure safe and reliable operation is directly linked to nuclear safety and the cybersecurity of the facility.The management of network security in distributed control systems(DCS)is crucial for achieving this objective.Due to the varying network settings and parameters of the DCS implemented in each nuclear power plant,the network security status of the system sometimes diverges from expectations.During system operation,it will undoubtedly encounter network security issues.Consequently,nuclear power plants utilize the technical criteria outlined in GB/T 22239 to formulate a network security management program aimed at enhancing the operational security of DCS within these facilities.This study utilizes existing network security regulations and standards as a reference to analyze the network security control standards based on the nuclear power plant’s control system.It delineates the fundamental requirements for network security management,facilitating integration with the entire life cycle of the research,development,and application of the nuclear power plant’s distributed control system,thereby establishing a network security management methodology that satisfies the control requirements of the nuclear power plant.Initially,it presents DCS and network security management,outlines current domestic and international network security legislation and standards,and specifies the standards pertinent to the administration of DCS in nuclear power plants.Secondly,the design of network security management for DCS is executed in conjunction with the specific context of nuclear power plants.This encompasses the deployment of network security apparatus,validation of the network security management strategy,and optimization adjustments.Consequently,recommendations beneficial to the network security management of nuclear power plants are compiled,aimed at establishing a management system and incorporating the concept of full life cycle management,which is predicated on system requirements,system design,and both software and hardware considerations.Conversely,it presents the notion of comprehensive life cycle management and suggests network security management strategies encompassing system requirements,system architecture,detailed hardware and software design and implementation,procurement,internal system integration,system validation and acceptance testing,system installation,operational maintenance,system modifications,and decommissioning.We will consistently enhance the performance and functionality of DCS in nuclear power plants,establish a safe and secure operational environment,and thereby facilitate the implementation of DCS in nuclear facilities while ensuring robust network security in the future.
基金supported by National Natural Science Foundation of China(61901071,61871062,61771082,U20A20157)Science and Natural Science Foundation of Chongqing,China(cstc2020jcyjzdxmX0024)+1 种基金University Innovation Research Group of Chongqing(CXQT20017)Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJZD-K201901301).
文摘Network virtualization is the development trend and inevitable requirement of hybrid wireless sensor networks(HWSNs).Low mapping efficiency and service interruption caused by mobility seriously affect the reliability of sensing tasks and ultimately affect the long-term revenue of the infrastructure providers.In response to these problems,this paper proposes an efficient virtual network embedding algorithm with a reliable service guarantee.Based on the topological attributes of nodes,a method for evaluating the physical network resource importance degree is proposed,and the nodes with rich resources are selected to improve embedding efficiency.Then,a method for evaluating the physical network reliability degree is proposed to predict the probability of mobile sensors providing uninterrupted services.The simulation results show that the proposed algorithm improves the acceptance rate of virtual sensor networks(VSN)embedding requests and the long-term revenue of the infrastructure providers.
基金supported by National Key R&D Program of China(2022YFF1100300)Joint Fund of Henan Province Science and Technology R&D Program(235200810051)+1 种基金Key Project in Science and Technology Agency of Henan Province(242102310561)key research projects of higher education institutions in Henan Province(24B350002).
文摘Soybean is widely used in diets,and numerous reports have highlighted its antioxidant properties.However,constructing a methodology for rapid identifying and predicting a series of antioxidant active ingredients in Soybean presents certain challenges.Therefore,we introduced the spectrum-effect relationship-ingredient knockout identification technique to identify a series of antioxidant active ingredients in soybean.By combining untargeted metabolomics with network pharmacology,we predicted the antioxidant active ingredients and their target sites.We successfully identified 4 antioxidant active compounds(daidzein,genistein,daidzein,and glycitin)and 10 corresponding antioxidant targets(epidermal growth factor receptor(EGFR),estrogen receptor 1(ESR1),steroid receptor coactivator(SRC),tumor necrosis factor(TNF),kinase insert domain receptor(KDR),AKT serine/threonine kinase 1(AKT1),growth factor receptor bound protein 2(GRB2),signal transducer and activator of transcription1(STAT1),mitogen-activated protein kinase 8(MAPK8),B-cell lymphoma-2(BCL2))by our analysis.The validation results from cell experiments revealed that glycitin exhibited the best antioxidant activity and significantly influenced the expression of EGFR and the proteins associated with nuclear factor erythroid 2-related factor 2/NAD(P)H quinone dehydrogenase 1(NRF2/NQO1)signaling pathways.These findings were consistent with the predicted outcomes and were further confirmed in a zebrafish model.It suggests that glycitin may exert antioxidant effects by regulating the expression of EGFR,NRF2,and NQO1 proteins.The results demonstrate that a rapid analytical method for determining antioxidant activity was established.
基金supported by the Scientific and Technological Developing Scheme of Jilin Province,China(No.20240101371JC)the National Natural Science Foundation of China(No.62107008).
文摘A Bayesian network reconstruction method based on norm minimization is proposed to address the sparsity and iterative divergence issues in network reconstruction caused by noise and missing values.This method achieves precise adjustment of the network structure by constructing a preliminary random network model and introducing small-world network characteristics and combines L1 norm minimization regularization techniques to control model complexity and optimize the inference process of variable dependencies.In the experiment of game network reconstruction,when the success rate of the L1 norm minimization model’s existence connection reconstruction reaches 100%,the minimum data required is about 40%,while the minimum data required for a sparse Bayesian learning network is about 45%.In terms of operational efficiency,the running time for minimizing the L1 normis basically maintained at 1.0 s,while the success rate of connection reconstruction increases significantly with an increase in data volume,reaching a maximum of 13.2 s.Meanwhile,in the case of a signal-to-noise ratio of 10 dB,the L1 model achieves a 100% success rate in the reconstruction of existing connections,while the sparse Bayesian network had the highest success rate of 90% in the reconstruction of non-existent connections.In the analysis of actual cases,the maximum lift and drop track of the research method is 0.08 m.The mean square error is 5.74 cm^(2).The results indicate that this norm minimization-based method has good performance in data efficiency and model stability,effectively reducing the impact of outliers on the reconstruction results to more accurately reflect the actual situation.
基金sponsored by the Tianshan Talent Foundation of Xinjiang Uygur Autonomous Region under No.2024TSYCCX0010the National Natural Science Foundation of China(12303094 and 52165053)+2 种基金the National Key R&D Program of China(No.2021YFC220350)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C683)the China Postdoctoral Science Foundation(2021M702751&2023T160549)。
文摘In order to improve the deep learning training efficiency of the large reflector antenna active adjustment technique,this paper synthesizes the characteristic that each actuator can only adjust the panel connected to it,and proposes a divided-ring antenna active adjustment deep learning training modeling method.The method organizes panel node data according to actuator ring positions,using panel displacements as input features and actuator adjustments as output labels.Through systematic sorting,reorganization,and normalization,the ring-divided data are transformed into grid-structured tensors suitable for convolutional processing.Multi-layer convolutional neural networks are then constructed for surface adjustment prediction,optimized through a hybrid strategy combining simulated annealing and the Adam algorithm.Through the dataset divided-ring preprocessing,active adjustment neural network construction and model training for the case of an 8 m reflector antenna,the analytical results show that the proposed method can effectively shorten the training time,and the final model's prediction accuracy is greatly improved,which demonstrates the feasibility and effectiveness of the proposed method.
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA28040300)Project for Guangxi Science and Technology Base,and Talents(Grant No.GK AD22035957)+1 种基金the Informatization Plan of the Chinese Academy of Sciences(Grant No.CAS-WX2021SF-0304)the West Light Foundation of the ChineseAcademy of Sciences(Grant No.XAB2021YN19).
文摘To address uncertainties in satellite orbit error prediction,this study proposes a novel ensemble learning-based orbit prediction method specifically designed for the BeiDou navigation satellite system(BDS).Building on ephemeris data and perturbation corrections,two new models are proposed:attention-enhanced BPNN(AEBP)and Transformer-ResNet-BiLSTM(TR-BiLSTM).These models effectively capture both local and global dependencies in satellite orbit data.To further enhance prediction accuracy and stability,the outputs of these two models were integrated using the gradient boosting decision tree(GBDT)ensemble learning method,which was optimized through a grid search.The main contribution of this approach is the synergistic combination of deep learning models and GBDT,which significantly improves both the accuracy and robustness of satellite orbit predictions.This model was validated using broadcast ephemeris data from the BDS-3 MEO and inclined geosynchronous orbit(IGSO)satellites.The results show that the proposed method achieves an error correction rate of 65.4%.This ensemble learning-based approach offers a highly effective solution for high-precision and stable satellite orbit predictions.
基金substantially supported by the National Natural Science Foundation of China under Grant No.62002263in part by Tianjin Municipal Education Commission Research Program Project under 2022KJ012Tianjin Science and Technology Program Projects:24YDTPJC00630.
文摘With technological advancements,high-speed rail has emerged as a prevalent mode of transportation.During travel,passengers exhibit a growing demand for streaming media services.However,the high-speed mobile networks environment poses challenges,including frequent base station handoffs,which significantly degrade wireless network transmission performance.Improving transmission efficiency in high-speed mobile networks and optimizing spatiotemporal wireless resource allocation to enhance passengers’media experiences are key research priorities.To address these issues,we propose an Adaptive Cross-Layer Optimization Transmission Method with Environment Awareness(ACOTM-EA)tailored for high-speed rail streaming media.Within this framework,we develop a channel quality prediction model utilizing Kalman filtering and an algorithm to identify packet loss causes.Additionally,we introduce a proactive base station handoffstrategy to minimize handoffrelated disruptions and optimize resource distribution across adjacent base stations.Moreover,this study presents a wireless resource allocation approach based on an enhanced genetic algorithm,coupled with an adaptive bitrate selection mechanism,to maximize passenger Quality of Experience(QoE).To evaluate the proposed method,we designed a simulation experiment and compared ACOTM-EA with established algorithms.Results indicate that ACOTM-EA improves throughput by 11%and enhances passengers’media experience by 5%.
基金supported by the National Natural Science Foundation of China(62176214).
文摘For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.
基金supported by the National Natural Science Foundation of China(No.12025301)the Tsinghua University Initiative Scientific Research Program.
文摘Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing.