Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled pe...Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitation...Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.展开更多
Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growin...Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.展开更多
In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gra...In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gravity response under a forward model of equivalent density changes.Additionally,we thoroughly investigated the seismic monitoring capabilities of the gravity network in the central and southern regions of the Tan-Lu fault.Expanding on these analyses.Recent gravity field variations were examined in the mid-southern segment of the Tan-Lu fault zone and its surrounding areas from 2013 to2023.The results indicate that the observation capabilities of the northern network in the study area outperform those of the southern gravity network,with the northern network demonstrating a more evenly distributed coverage.The optimal gravity anomaly recovery effect for the entire study area is achieved at a resolution of 0.5°×0.5°.With an equivalent observable signal in the range of 30×10^(-8)m/s^(2) to 40×10^(-8)m/s^(2),the spatial resolution of the gravity network's field source is estimated to be approximately 55 km.From 2013 to 2023,a significant positive change has been observed in the gravity field within the study area.The Tan-Lu fault zone plays a crucial role in governing the crustal movement in this region,with the dextral strike-slip movement trend of the fault persisting.Small earthquakes occur more frequently in the southern section of the fault zone,while strong earthquakes are less common.The alignment of gravity field changes with the fault strike indicates ongoing activity in the fault zone without any signs of locking.In the central segment of the Tan-Lu fault zone in the Shandong region,there appears to be a weaker correlation between gravity field changes and fault trends.This discrepancy may suggest that the area is locked,resulting in the accumulation of stress and strain.It is imperative to monitor the continuous evolution of the gravity field in this region to gain insights into potential seismic risks.展开更多
Solar energy is a pivotal clean energy source in the transition to carbon neutrality from fossil fuels.However,the intermittent and stochastic characteristics of solar radiation pose challenges for accurate simulation...Solar energy is a pivotal clean energy source in the transition to carbon neutrality from fossil fuels.However,the intermittent and stochastic characteristics of solar radiation pose challenges for accurate simulation and prediction.Accurately simulating and predicting solar radiation and its variability are crucial for optimizing solar energy utilization.This study conducted simulation experiments using the WRF-Solar model from 25 June to 25 July 2022,to evaluate the accuracy and performance of the simulated solar radiation across China.The simulations covered the whole country with a grid spacing of 27 km and were compared with ground observation network data from the Chinese Ecosystem Research Network.The results indicated that WRF-Solar can accurately capture the spatiotemporal patterns of global horizontal irradiance over China,but there is still an overestimation of solar radiation,and the model underestimates the total cloud cover.The root-mean-square error ranged from 92.83 to 188.13 W m^(-2) and the mean bias(MB)ranged from 21.05 to 56.22 W m^(-2).The simulation showed the smallest MB at Lhasa on the Qinghai–Tibet Plateau,while the largest MB was observed in Southeast China.To enhance the accuracy of solar radiation simulation,the authors compared the Fast All-sky Radiation Model for Solar with the Rapid Radiative Transfer Model for General Circulation Models and found that the former provides better simulation.展开更多
To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single inp...To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.展开更多
A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is a...A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is approximated. Compared with the conventional linear observer, the observer provides more accurate estimation of the state. The state estimation error is proved to asymptotically approach zero with the Lyapunov method. The simulation result shows that the proposed observer scheme is effective and has a potential application ability in the fault detection and identification (FDI), and the state estimation.展开更多
Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked cont...Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.展开更多
This paper focuses on the problem of stability analysis and controller design for a class of delay systems based on networked control systems. By introducing some free matrix variables, some criteria for stability ana...This paper focuses on the problem of stability analysis and controller design for a class of delay systems based on networked control systems. By introducing some free matrix variables, some criteria for stability analysis and observer-based control law design can be obtained by the solving of linear matrix inequalities. A numerical example is also offered to prove the effectiveness of the proposed method.展开更多
The problem of fault estimation and accommodation of nonlinear systems with disturbances is studied using adaptive observer and neural network techniques.A robust adaptive learning algorithm based on switchingβsmodif...The problem of fault estimation and accommodation of nonlinear systems with disturbances is studied using adaptive observer and neural network techniques.A robust adaptive learning algorithm based on switchingβsmodification is developed to realize the accurate and fast estimation of unknown actuator faults or component faults.Then a fault tolerant controller is designed to restore system performance.Dynamic error convergence and system stability can be guaranteed by Lyapunov stability theory.Finally,simulation results of quadrotor helicopter attitude systems are presented to illustrate the efficiency of the proposed techniques.展开更多
In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the me...In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.展开更多
The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS...The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.展开更多
This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asy...This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.展开更多
This paper considers the problem of constructing a direct coupling quantum observer for a closed linear quantum system. The proposed distributed observer consists of a network of quantum harmonic oscillators and it is...This paper considers the problem of constructing a direct coupling quantum observer for a closed linear quantum system. The proposed distributed observer consists of a network of quantum harmonic oscillators and it is shown that the observer network converges to a consensus in a time averaged sense in which each element of the observer estimates the specified output of the quantum plant. An example and simulations are included to illustrate the properties of the observer network.展开更多
The wheel brake system of an aircraft is the key to ensure its safe landing and rejected takeoff.A wheel’s slip state is determined by the brake torque and ground adhesion torque,both of which have a large degree of ...The wheel brake system of an aircraft is the key to ensure its safe landing and rejected takeoff.A wheel’s slip state is determined by the brake torque and ground adhesion torque,both of which have a large degree of uncertainty.It is this nature that brings upon the challenge of obtaining high deceleration rate for aircraft brake control.To overcome the disturbances caused by the above uncertainties,a braking control law is designed,which consists of two parts:runway surface recognition and wheel’s slip state tracking.In runway surface recognition,the identification rules balancing safety and braking efficiency are defined,and the actual identification process is realized through recursive least square method with forgetting factors.In slip state tracking,the LuGre model with parameter adaptation and a brake torque compensation method based on RBF neural network are proposed,and their convergence are proven.The effectiveness of our control law is verified through simulation and ground experiment.Especially in the experiments on the ground inertial test bench,compared to the improved pressure-biased-modulation(PBM)anti-skid algorithm,fewer wheel slips occur,and the average deceleration rate is increased by 5.78%,which makes it a control strategy with potential for engineering applications.展开更多
The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of G...The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.展开更多
In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation ...In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.展开更多
The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered ...The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.展开更多
This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural la...This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.展开更多
基金funded by the King Salman Center For Disability Research,through Research Group No.KSRG-2024-468。
文摘Disability is defined as a condition that makes it difficult for a person to perform certain vital activities.In recent years,the integration of the concepts of intelligence in solving various problems for disabled persons has become more frequent.However,controlling an exoskeleton for rehabilitation presents challenges due to their nonlinear characteristics and external disturbances caused by the structure itself or the patient wearing the exoskeleton.To remedy these problems,this paper presents a novel adaptive control strategy for upper-limb rehabilitation exoskeletons,addressing the challenges of nonlinear dynamics and external disturbances.The proposed controller integrated a Radial Basis Function Neural Network(RBFNN)with a disturbance observer and employed a high-dimensional integral Lyapunov function to guarantee system stability and trajectory tracking performance.In the control system,the role of the RBFNN was to estimate uncertain signals in the dynamic model,while the disturbance observer tackled external disturbances during trajectory tracking.Artificially created scenarios for Human-Robot interactive experiments and periodically repeated reference trajectory experiments validated the controller’s performance,demonstrating efficient tracking.The proposed controller is found to achieve superior tracking accuracy with Root-Mean-Squared(RMS)errors of 0.022-0.026 rad for all joints,outperforming conventional Proportional-Integral-Derivative(PID)by 73%and Neural-Fuzzy Adaptive Control(NFAC)by 389.47%lower error.These results suggested that the RBFNN adaptive controller,coupled with disturbance compensation,could serve as an effective rehabilitation tool for upper-limb exoskeletons.These results demonstrate the superiority of the proposed method in enhancing rehabilitation accuracy and robustness,offering a promising solution for the control of upper-limb assistive devices.Based on the obtained results and due to their high robustness,the proposed control schemes can be extended to other motor disabilities,including lower limb exoskeletons.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
基金supported by the National Natural Science Foundation of China(62133008,62303273,62188101,62373226,62473173)Young Taishan Scholars Program of Shandong Province of China(tsqn202408206)+2 种基金a Project of Shandong Province Higher Educational Youth and Innovation Talent Introduction and Education Programthe Natural Science Foundation of Shandong Province,China(ZR2023QF072)China Postdoctoral Science Foundation(2022M721932)
文摘Driven by practical applications, the achievement of distributed observers for nonlinear systems has emerged as a crucial advancement in recent years. However, existing theoretical advancements face certain limitations: They either fail to address more complex nonlinear phenomena, rely on hard-to-verify assumptions, or encounter difficulties in solving system parameters.Consequently, this paper aims to address these challenges by investigating distributed observers for nonlinear systems through the full-measured canonical form(FMCF), which is inspired by full-measured system(FMS) theory. To begin with, this study addresses the fact that the FMCF can only be obtained through the observable canonical form(OCF) in existing FMS theories.The paper demonstrates that a class of nonlinear systems can directly obtain FMCF through state space equations, independent of OCF. Also, a general method for solving FMCF in such systems is provided. Furthermore, based on the FMCF, A distributed observer is developed for nonlinear systems under two scenarios: Lipschitz conditions and open-loop bounded conditions.The paper establishes their asymptotic omniscience and demonstrates that the designed distributed observer in this study has fewer design parameters and is more convenient to construct than existing approaches. Finally, the effectiveness of the proposed methods is validated through simulation results on Van der Pol oscillators and microgrid systems.
基金supported by the National Natural Science Foundation of China(No.62101587)the National Funded Postdoctoral Researcher Program of China(No.GZC20233578)。
文摘Micro-nano Earth Observation Satellite(MEOS)constellation has the advantages of low construction cost,short revisit cycle,and high functional density,which is considered a promising solution for serving rapidly growing observation demands.The observation Scheduling Problem in the MEOS constellation(MEOSSP)is a challenging issue due to the large number of satellites and tasks,as well as complex observation constraints.To address the large-scale and complicated MEOSSP,we develop a Two-Stage Scheduling Algorithm based on the Pointer Network with Attention mechanism(TSSA-PNA).In TSSA-PNA,the MEOS observation scheduling is decomposed into a task allocation stage and a single-MEOS scheduling stage.In the task allocation stage,an adaptive task allocation algorithm with four problem-specific allocation operators is proposed to reallocate the unscheduled tasks to new MEOSs.Regarding the single-MEOS scheduling stage,we design a pointer network based on the encoder-decoder architecture to learn the optimal singleMEOS scheduling solution and introduce the attention mechanism into the encoder to improve the learning efficiency.The Pointer Network with Attention mechanism(PNA)can generate the single-MEOS scheduling solution quickly in an end-to-end manner.These two decomposed stages are performed iteratively to search for the solution with high profit.A greedy local search algorithm is developed to improve the profits further.The performance of the PNA and TSSA-PNA on singleMEOS and multi-MEOS scheduling problems are evaluated in the experiments.The experimental results demonstrate that PNA can obtain the approximate solution for the single-MEOS scheduling problem in a short time.Besides,the TSSA-PNA can achieve higher observation profits than the existing scheduling algorithms within the acceptable computational time for the large-scale MEOS scheduling problem.
基金supported by the Three-pronged Project on Earthquake Monitoring,Forecasting and Scientific Research of the China Earthquake Administration(No.3JH-202402026)The Open Fund of Wuhan,Gravitation and Solid Earth Tides,National Observation and Research Station(WHYWZ202209)+1 种基金The Joint Open Fund of Mengcheng National Geophysical Observatory(No.MENGO-202210 and MENGO-202211)The Science for Earthquake Resilience,China Earthquake Administration(No.XH22002YA)。
文摘In this paper,we computed the fractal dimension of three survey areas within the central and southern sections of the Tan-Lu fault zone using fractal analysis.Subsequently,simulations were conducted to analyze the gravity response under a forward model of equivalent density changes.Additionally,we thoroughly investigated the seismic monitoring capabilities of the gravity network in the central and southern regions of the Tan-Lu fault.Expanding on these analyses.Recent gravity field variations were examined in the mid-southern segment of the Tan-Lu fault zone and its surrounding areas from 2013 to2023.The results indicate that the observation capabilities of the northern network in the study area outperform those of the southern gravity network,with the northern network demonstrating a more evenly distributed coverage.The optimal gravity anomaly recovery effect for the entire study area is achieved at a resolution of 0.5°×0.5°.With an equivalent observable signal in the range of 30×10^(-8)m/s^(2) to 40×10^(-8)m/s^(2),the spatial resolution of the gravity network's field source is estimated to be approximately 55 km.From 2013 to 2023,a significant positive change has been observed in the gravity field within the study area.The Tan-Lu fault zone plays a crucial role in governing the crustal movement in this region,with the dextral strike-slip movement trend of the fault persisting.Small earthquakes occur more frequently in the southern section of the fault zone,while strong earthquakes are less common.The alignment of gravity field changes with the fault strike indicates ongoing activity in the fault zone without any signs of locking.In the central segment of the Tan-Lu fault zone in the Shandong region,there appears to be a weaker correlation between gravity field changes and fault trends.This discrepancy may suggest that the area is locked,resulting in the accumulation of stress and strain.It is imperative to monitor the continuous evolution of the gravity field in this region to gain insights into potential seismic risks.
基金supported by the National Natural Science Foundation of China[grant number 42175132]the National Key R&D Program[grant number 2020YFA0607802]the CAS Information Technology Program[grant number CAS-WX2021SF-0107-02]。
文摘Solar energy is a pivotal clean energy source in the transition to carbon neutrality from fossil fuels.However,the intermittent and stochastic characteristics of solar radiation pose challenges for accurate simulation and prediction.Accurately simulating and predicting solar radiation and its variability are crucial for optimizing solar energy utilization.This study conducted simulation experiments using the WRF-Solar model from 25 June to 25 July 2022,to evaluate the accuracy and performance of the simulated solar radiation across China.The simulations covered the whole country with a grid spacing of 27 km and were compared with ground observation network data from the Chinese Ecosystem Research Network.The results indicated that WRF-Solar can accurately capture the spatiotemporal patterns of global horizontal irradiance over China,but there is still an overestimation of solar radiation,and the model underestimates the total cloud cover.The root-mean-square error ranged from 92.83 to 188.13 W m^(-2) and the mean bias(MB)ranged from 21.05 to 56.22 W m^(-2).The simulation showed the smallest MB at Lhasa on the Qinghai–Tibet Plateau,while the largest MB was observed in Southeast China.To enhance the accuracy of solar radiation simulation,the authors compared the Fast All-sky Radiation Model for Solar with the Rapid Radiative Transfer Model for General Circulation Models and found that the former provides better simulation.
基金supported in part by the Australian Research Council Discovery Project(DP190101557)
文摘To handle input and output time delays that commonly exist in many networked control systems(NCSs), a new robust continuous sliding mode control(CSMC) scheme is proposed for the output tracking in uncertain single input-single-output(SISO) networked control systems. This scheme consists of three consecutive steps. First, although the network-induced delay in those systems can be effectively handled by using Pade approximation(PA), the unmatched disturbance cames out as another difficulty in the control design. Second, to actively estimate this unmatched disturbance, a generalized proportional integral observer(GPIO) technique is utilized based on only one measured state. Third, by constructing a new sliding manifold with the aid of the estimated unmatched disturbance and states, a GPIO-based CSMC is synthesized, which is employed to cope with not only matched and unmatched disturbances, but also networkinduced delays. The stability of the entire closed-loop system under the proposed GPIO-based CSMC is detailedly analyzed.The promising tracking efficiency and feasibility of the proposed control methodology are verified through simulations and experiments on Quanser's servo module for motion control under various test conditions.
文摘A new type of nonlinear observer for nonlinear systems is presented. Instead of approximating thc cntire nonlinear system with the neural network (NN), only the un-modeled part left over after the lincarization is approximated. Compared with the conventional linear observer, the observer provides more accurate estimation of the state. The state estimation error is proved to asymptotically approach zero with the Lyapunov method. The simulation result shows that the proposed observer scheme is effective and has a potential application ability in the fault detection and identification (FDI), and the state estimation.
文摘Security and reliability must be focused on control sys- tems firstly, and fault detection and diagnosis (FDD) is the main theory and technology. Now, there are many positive results in FDD for linear networked control systems (LNCSs), but nonlinear networked control systems (NNCSs) are less involved. Based on the T-S fuzzy-modeling theory, NNCSs are modeled and network random time-delays are changed into the unknown bounded uncertain part without changing its structure. Then a fuzzy state observer is designed and an observer-based fault detection approach for an NNCS is presented. The main results are given and the relative theories are proved in detail. Finally, some simulation results are given and demonstrate the proposed method is effective.
基金supported by the National Science Foundation of China (No.60474003)Hunan Provincial Natural Science Foundation of China (07JJ6126)the Postdoctoral Science Foundation of Central South University
文摘This paper focuses on the problem of stability analysis and controller design for a class of delay systems based on networked control systems. By introducing some free matrix variables, some criteria for stability analysis and observer-based control law design can be obtained by the solving of linear matrix inequalities. A numerical example is also offered to prove the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.61533008)Fund of National Engineering and Research Center for Commercial Aircraft Manufacturing(No.SAMC14-JS-15-053)the Fundamental Research Funds for the Central Universities (No.NJ20150011)
文摘The problem of fault estimation and accommodation of nonlinear systems with disturbances is studied using adaptive observer and neural network techniques.A robust adaptive learning algorithm based on switchingβsmodification is developed to realize the accurate and fast estimation of unknown actuator faults or component faults.Then a fault tolerant controller is designed to restore system performance.Dynamic error convergence and system stability can be guaranteed by Lyapunov stability theory.Finally,simulation results of quadrotor helicopter attitude systems are presented to illustrate the efficiency of the proposed techniques.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61174021 and 61473136)the 111 Project of China(Grant No.B12018)
文摘In this paper,the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method.Firstly,a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems.The mobile agents,each of which is affixed with a controller and an actuator,can provide the observer-based control for the target systems.By using Lyapunov stability arguments,the stability for the estimation error system and distributed parameter control system is proved,meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance.A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.
基金supported partly by the Natural Science Foundation China (70571032).
文摘The influence of random short time-delay to networked control systems (NCS) is changed into an unknown bounded uncertain part. Without changing the structure of the system, an Hoo states observer is designed for NCS with short time-delay. Based on the designed states observer, a robust fault detection approach is proposed for NCS. In addition, an optimization method for the selection of the detection threshold is introduced for better tradeoff between the robustness and the sensitivity. Finally, some simulation results demonstrate that the presented states observer is robust and the fault detection for NCS is effective.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60274099)the National High Technology Research and Development Program of China (Grant No. 2004AA412030)
文摘This paper is concerned with the robust Hoo synchronization problem for a class of complex dynamical networks by applying the observer-based control. The proposed feedback control scheme is developed to ensure the asymptotic stability of the augmented system, to reconstruct the non-measurable state variables of each node and to improve the H∞ performance related to the synchronization error and observation error despite the external disturbance. Based on the Lyapunov stability theory, a synchronization criterion is obtained under which the controlled network can be robustly stabilized onto a desired state with a guaranteed H∞ performance. The controller and the observer gains can be given by the feasible solutions of a set of linear matrix inequalities (LMIs). The effectiveness of the proposed control scheme is demonstrated by a numerical example through simulation.
文摘This paper considers the problem of constructing a direct coupling quantum observer for a closed linear quantum system. The proposed distributed observer consists of a network of quantum harmonic oscillators and it is shown that the observer network converges to a consensus in a time averaged sense in which each element of the observer estimates the specified output of the quantum plant. An example and simulations are included to illustrate the properties of the observer network.
基金supported by the National Natural Science Foundation of China(Grant No.52205045)the National Key Research and Development Program of China(Grant No.2021YFB2011300)the Young Elite Scientists Sponsorship Program by CAST(Grant No.YESS20200063)。
文摘The wheel brake system of an aircraft is the key to ensure its safe landing and rejected takeoff.A wheel’s slip state is determined by the brake torque and ground adhesion torque,both of which have a large degree of uncertainty.It is this nature that brings upon the challenge of obtaining high deceleration rate for aircraft brake control.To overcome the disturbances caused by the above uncertainties,a braking control law is designed,which consists of two parts:runway surface recognition and wheel’s slip state tracking.In runway surface recognition,the identification rules balancing safety and braking efficiency are defined,and the actual identification process is realized through recursive least square method with forgetting factors.In slip state tracking,the LuGre model with parameter adaptation and a brake torque compensation method based on RBF neural network are proposed,and their convergence are proven.The effectiveness of our control law is verified through simulation and ground experiment.Especially in the experiments on the ground inertial test bench,compared to the improved pressure-biased-modulation(PBM)anti-skid algorithm,fewer wheel slips occur,and the average deceleration rate is increased by 5.78%,which makes it a control strategy with potential for engineering applications.
基金the National Key R&D Program of China(Grant No.2022YFF0503702)the National Natural Science Foundation of China(Grant Nos.42074186,41831071,42004136,and 42274195)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20211036)the Specialized Research Fund for State Key Laboratories,and the University of Science and Technology of China Research Funds of the Double First-Class Initiative(Grant No.YD2080002013).
文摘The global ionosphere maps(GIM)provided by the International GNSS Service(IGS)are extensively utilized for ionospheric morphology monitoring,scientific research,and practical application.Assessing the credibility of GIM products in data-sparse regions is of paramount importance.In this study,measurements from the Crustal Movement Observation Network of China(CMONOC)are leveraged to evaluate the suitability of IGS-GIM products over China region in 2013-2014.The indices of mean error(ME),root mean square error(RMSE),and normalized RMSE(NRMSE)are then utilized to quantify the accuracy of IGS-GIM products.Results revealed distinct local time and latitudinal dependencies in IGS-GIM errors,with substantially high errors at nighttime(NRMSE:39%)and above 40°latitude(NRMSE:49%).Seasonal differences also emerged,with larger equinoctial deviations(NRMSE:33.5%)compared with summer(20%).A preliminary analysis implied that the irregular assimilation of sparse IGS observations,compounded by China’s distinct geomagnetic topology,may manifest as error variations.These results suggest that modeling based solely on IGS-GIM observations engenders inadequate representations across China and that a thorough examination would proffer the necessary foundation for advancing regional total electron content(TEC)constructions.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.62373197 and 61873326)。
文摘In many engineering networks, only a part of target state variables are required to be estimated.On the other hand,multi-layer complex network exists widely in practical situations.In this paper, the state estimation of target state variables in multi-layer complex dynamical networks with nonlinear node dynamics is studied.A suitable functional state observer is constructed with the limited measurement.The parameters of the designed functional observer are obtained from the algebraic method and the stability of the functional observer is proven by the Lyapunov theorem.Some necessary conditions that need to be satisfied for the design of the functional state observer are obtained.Different from previous studies, in the multi-layer complex dynamical network with nonlinear node dynamics, the proposed method can estimate the state of target variables on some layers directly instead of estimating all the individual states.Thus, it can greatly reduce the placement of observers and computational cost.Numerical simulations with the three-layer complex dynamical network composed of three-dimensional nonlinear dynamical nodes are developed to verify the effectiveness of the method.
基金supported in part by the National Natural Science Foundation of China (62233012,62273087)the Research Fund for the Taishan Scholar Project of Shandong Province of Chinathe Shanghai Pujiang Program of China (22PJ1400400)。
文摘The present study addresses the problem of fault estimation for a specific class of nonlinear time-varying complex networks,utilizing an unknown-input-observer approach within the framework of dynamic event-triggered mechanism(DETM).In order to optimize communication resource utilization,the DETM is employed to determine whether the current measurement data should be transmitted to the estimator or not.To guarantee a satisfactory estimation performance for the fault signal,an unknown-input-observer-based estimator is constructed to decouple the estimation error dynamics from the influence of fault signals.The aim of this paper is to find the suitable estimator parameters under the effects of DETM such that both the state estimates and fault estimates are confined within two sets of closed ellipsoid domains.The techniques of recursive matrix inequality are applied to derive sufficient conditions for the existence of the desired estimator,ensuring that the specified performance requirements are met under certain conditions.Then,the estimator gains are derived by minimizing the ellipsoid domain in the sense of trace and a recursive estimator parameter design algorithm is then provided.Finally,a numerical example is conducted to demonstrate the effectiveness of the designed estimator.
基金Supported by Remote Sensing Support for Offshore Ocean Environment and Polar Sea Ice Early Warning Services(102121201550000009004)。
文摘This paper presents the networking observation capabilities of Chinese ocean satellites and their diverse applications in ocean disaster prevention,ecological monitoring,and resource development.Since the inaugural launch in 2002,China has achieved substantial advancements in ocean satellite technology,forming an observation system composed of the HY-1,HY-2,and HY-3 series satellites.These satellites are integral to global ocean environmental monitoring due to their high resolution,extensive coverage,and frequent observations.Looking forward,China aims to further enhance and expand its ocean satellite capabilities through ongoing projects to support global environmental protection and sustainable development.