期刊文献+
共找到43,610篇文章
< 1 2 250 >
每页显示 20 50 100
Modeling and Comprehensive Review of Signaling Storms in 3GPP-Based Mobile Broadband Networks:Causes,Solutions,and Countermeasures
1
作者 Muhammad Qasim Khan Fazal Malik +1 位作者 Fahad Alturise Noor Rahman 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期123-153,共31页
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a... Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject. 展开更多
关键词 Signaling storm problems control signaling load analytical modeling 3GPP networks smart devices diameter signaling mobile broadband data access data traffic mobility management signaling network architecture 5G mobile communication
在线阅读 下载PDF
A method for modeling and evaluating the interoperability of multi-agent systems based on hierarchical weighted networks
2
作者 DONG Jingwei TANG Wei YU Minggang 《Journal of Systems Engineering and Electronics》 2025年第3期754-767,共14页
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight... Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies. 展开更多
关键词 complex network agent INTEROPERABILITY susceptible-infected-recovered model dynamic Bayesian network
在线阅读 下载PDF
Wireless Sensor Network Modeling and Analysis for Attack Detection
3
作者 Tamara Zhukabayeva Vasily Desnitsky Assel Abdildayeva 《Computer Modeling in Engineering & Sciences》 2025年第8期2591-2625,共35页
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar... Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios. 展开更多
关键词 Wireless sensor network modeling SECURITY ATTACK DETECTION MONITORING
在线阅读 下载PDF
A non-affine constitutive model for the extremely large deformation of hydrogel polymer network based on network modeling method
4
作者 Jincheng Lei Yuan Gao +1 位作者 Danyang Wang Zishun Liu 《Acta Mechanica Sinica》 2025年第7期69-80,共12页
Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polym... Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well. 展开更多
关键词 Non-affine deformation Periodic random network model Large deformation Constitutive model
原文传递
Modeling of Flapping Wing Aerial Vehicle Using Hybrid Phase-functioned Neural Network Based on Flight Data
5
作者 Zhihao Zhao Zhiling Jiang +1 位作者 Chenyang Zhang Guanghua Song 《Journal of Bionic Engineering》 2025年第3期1126-1142,共17页
Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win... Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles. 展开更多
关键词 Flapping wing aerial vehicle Flapping phase modeling Neural networks
在线阅读 下载PDF
Kolmogorov-Arnold networks modeling of wall pressure wavenumber-frequency spectra under turbulent boundary layers
6
作者 Zhiteng Zhou Yi Liu +1 位作者 Shizhao Wang Guowei He 《Theoretical & Applied Mechanics Letters》 2025年第2期115-121,共7页
The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only... The empirical models for wavenumber-frequency spectra of wall pressure are broadly used in the fast prediction of aerodynamic and hydrodynamic noise.However,it needs to fit the parameter using massive data and is only used for limited cases.In this letter,we propose Kolmogorov-Arnold networks(KAN)base models for wavenumber-frequency spectra of pressure fluctuations under turbulent boundary layers.The results are compared with DNS results.In turbulent channel flows,it is found that the KAN base model leads to a smooth wavenumber-frequency spectrum with sparse samples.In the turbulent flow over an axisymmetric body of revolution,the KAN base model captures the wavenumber-frequency spectra near the convective peak. 展开更多
关键词 Wavenumber-frequency spectra Kolmogorov-Arnold networks modeling Turbulent boundary layers
在线阅读 下载PDF
Enhancing hydrogel predictive modeling:an augmented neural network approach for swelling dynamics in pH-responsive hydrogels
7
作者 M.A.FARAJI M.ASKARI-SEDEH +1 位作者 A.ZOLFAGHARIAN M.BAGHANI 《Applied Mathematics and Mechanics(English Edition)》 2025年第9期1787-1808,共22页
The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional expe... The pH-sensitive hydrogels play a crucial role in applications such as soft robotics,drug delivery,and biomedical sensors,as they require precise control of swelling behaviors and stress distributions.Traditional experimental methods struggle to capture stress distributions due to technical limitations,while numerical approaches are often computationally intensive.This study presents a hybrid framework combining analytical modeling and machine learning(ML)to overcome these challenges.An analytical model is used to simulate transient swelling behaviors and stress distributions,and is confirmed to be viable through the comparison of the obtained simulation results with the existing experimental swelling data.The predictions from this model are used to train neural networks,including a two-step augmented architecture.The initial neural network predicts hydration values,which are then fed into a second network to predict stress distributions,effectively capturing nonlinear interdependencies.This approach achieves mean absolute errors(MAEs)as low as 0.031,with average errors of 1.9%for the radial stress and 2.55%for the hoop stress.This framework significantly enhances the predictive accuracy and reduces the computational complexity,offering actionable insights for optimizing hydrogel-based systems. 展开更多
关键词 transient swelling pH-responsive hydrogel neural network data-driven model hydration and stress dynamics
在线阅读 下载PDF
A precise magnetic modeling method for scientific satellites based on a self-attention mechanism and Kolmogorov-Arnold Networks
8
作者 Ye Liu Xingjian Shi +2 位作者 Wenzhe Yang Zhiming Cai Huawang Li 《Astronomical Techniques and Instruments》 2025年第1期1-9,共9页
As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additi... As the complexity of scientific satellite missions increases,the requirements for their magnetic fields,magnetic field fluctuations,and even magnetic field gradients and variations become increasingly stringent.Additionally,there is a growing need to address the alternating magnetic fields produced by the spacecraft itself.This paper introduces a novel modeling method for spacecraft magnetic dipoles using an integrated self-attention mechanism and a transformer combined with Kolmogorov-Arnold Networks.The self-attention mechanism captures correlations among globally sparse data,establishing dependencies b.etween sparse magnetometer readings.Concurrently,the Kolmogorov-Arnold Network,proficient in modeling implicit numerical relationships between data features,enhances the ability to learn subtle patterns.Comparative experiments validate the capability of the proposed method to precisely model magnetic dipoles,achieving maximum Root Mean Square Errors of 24.06 mA·m^(2)and 0.32 cm for size and location modeling,respectively.The spacecraft magnetic model established using this method accurately computes magnetic fields and alternating magnetic fields at designated surfaces or points.This approach facilitates the rapid and precise construction of individual and complete spacecraft magnetic models,enabling the verification of magnetic specifications from the spacecraft design phase. 展开更多
关键词 Magnetic dipole model Self-attention mechanism Kolmogorov-Arnold networks Alternating current magnetic fields
在线阅读 下载PDF
Experimental and Neural Network Modeling of the Thermal Behavior of an Agricultural Greenhouse Integrated with a Phase Change Material(CaCl_(2)⋅6H_(2)O)
9
作者 Abdelouahab Benseddik Djamel Daoud +4 位作者 Ahmed Badji Hocine Bensaha Tarik Hadibi Yunfeng Wang Li Ming 《Energy Engineering》 2025年第12期5021-5037,共17页
In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Cha... In Saharan climates,greenhouses face extreme diurnal temperature fluctuations that generate thermal stress,reduce crop productivity,and hinder sustainable agricultural practices.Passive thermal storage using Phase Change Materials(PCM)is a promising solution to stabilize microclimatic conditions.This study aims to evaluate experimentally and numerically the effectiveness of PCM integration for moderating greenhouse temperature fluctuations under Saharan climatic conditions.Two identical greenhouse prototypes were constructed in Ghardaia,Algeria:a reference greenhouse and a PCM-integrated greenhouse using calcium chloride hexahydrate(CaCl_(2)⋅6H_(2)O).Thermal performance was assessed during a five-day experimental period(7–11May 2025)under severe ambient conditions.To complement this,a Nonlinear Auto-Regressive with eXogenous inputs(NARX)neural network model was developed and trained using a larger dataset(7–25 May 2025)to predict greenhouse thermal dynamics.The PCM greenhouse reduced peak daytime air temperature by an average of 8.14℃and decreased the diurnal temperature amplitude by 53.6%compared to the reference greenhouse.The NARX model achieved high predictive accuracy(R^(2)=0.990,RMSE=0.425℃,MAE=0.223℃,MBE=0.008℃),capturing both sensible and latent heat transfer mechanisms,including PCM melting and solidification.The combined experimental and predictive modeling results confirm the potential of PCM integration as an effective passive thermal regulation strategy for greenhouses in arid regions.This approach enhances microclimatic stability,improves energy efficiency,and supports the sustainability of protected agriculture under extreme climatic conditions. 展开更多
关键词 Agricultural greenhouse phase changematerial(PCM) CaCl_(2)⋅6H_(2)O thermal regulation NARX neural network experimental study modeling
在线阅读 下载PDF
Dynamic modeling and RBF neural network compensation control for space flexible manipulator with an underactuated hand 被引量:3
10
作者 Dongyang SHANG Xiaopeng LI +1 位作者 Meng YIN Fanjie LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第3期417-439,共23页
In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter pertur... In space operation,flexible manipulators and gripper mechanisms have been widely used because of light weight and flexibility.However,the vibration caused by slender structures in manipulators and the parameter perturbation caused by the uncertainty derived from grasping mass variation cannot be ignored.The existence of vibration and parameter perturbation makes the rotation control of flexible manipulators difficult,which seriously affects the operation accuracy of manipulators.What’s more,the complex dynamic coupling brings great challenges to the dynamics modeling and vibration analysis.To solve this problem,this paper takes the space flexible manipulator with an underactuated hand(SFMUH)as the research object.The dynamics model considering flexibility,multiple nonlinear elements and disturbance torque is established by the assumed modal method(AMM)and Hamilton’s principle.A dynamic modeling simplification method is proposed by analyzing the nonlinear terms.What’s more,a sliding mode control(SMC)method combined with the radial basis function(RBF)neural network compensation is proposed.Besides,the control law is designed using a saturation function in the control method to weaken the chatter phenomenon.With the help of neural networks to identify the uncertainty composition in the SFMUH,the tracking accuracy is improved.The results of ground control experiments verify the advantages of the control method for vibration suppression of the SFMUH. 展开更多
关键词 Space flexible manipulator RBF neural network Underactuated hand Dynamic models Model simplification
原文传递
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:2
11
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces Discontinuity characteristic variation Three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
在线阅读 下载PDF
基于三维地质建模和DFN的露天矿边坡稳定性评价 被引量:1
12
作者 陈永吉 鄢廷可 刘聪 《水文地质工程地质》 北大核心 2025年第4期181-191,共11页
针对传统数值模拟方法在处理离散岩体和节理方面的不足,依据利用无人机测绘技术及三维地质建模技术的发展,提出一种基于离散元数值分析的露天矿边坡稳定性评价方法。首先利用无人机测地技术获取数字高程模型和数字正射影像数据,然后运... 针对传统数值模拟方法在处理离散岩体和节理方面的不足,依据利用无人机测绘技术及三维地质建模技术的发展,提出一种基于离散元数值分析的露天矿边坡稳定性评价方法。首先利用无人机测地技术获取数字高程模型和数字正射影像数据,然后运用三维地质建模技术构建矿区概化模型,并结合离散裂隙网络,对结构面发育的坡体进行三维建模,最后采用FLAC^(3D)和3DEC软件对边坡稳定性进行计算。结果表明:(1)对复杂地形采用真三维建模并基于离散裂隙网络进行节理化更符合实际工程;采用无人机及三维地质建模技术可有效评价大范围露天矿区的稳定性。(2)构建内蒙古某露天矿区的概化模型,计算得到矿区开挖后竖向回弹量5~7 cm,边坡水平位移不超过3 cm,矿区边坡稳定;考虑节理的离散元数值分析计算所得稳定性系数为1.504,比传统数值模拟获得的稳定系数2.758显著减小,计算结果更符合实际。 展开更多
关键词 稳定性评价 三维地质建模 数值模拟 FLAC^(3D) 3DEC 离散裂隙网络
在线阅读 下载PDF
Algorithmic approach to discrete fracture network flow modeling in consideration of realistic connections in large-scale fracture networks
13
作者 Qihua Zhang Shan Dong +2 位作者 Yaoqi Liu Junjie Huang Feng Xiong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3798-3811,共14页
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne... Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications. 展开更多
关键词 Discrete fracture network(dfn)flow model Geometric algorithm Fracture flow Water-sealing effect
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
14
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
A Novel Self-Supervised Learning Network for Binocular Disparity Estimation 被引量:1
15
作者 Jiawei Tian Yu Zhou +5 位作者 Xiaobing Chen Salman A.AlQahtani Hongrong Chen Bo Yang Siyu Lu Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期209-229,共21页
Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This st... Two-dimensional endoscopic images are susceptible to interferences such as specular reflections and monotonous texture illumination,hindering accurate three-dimensional lesion reconstruction by surgical robots.This study proposes a novel end-to-end disparity estimation model to address these challenges.Our approach combines a Pseudo-Siamese neural network architecture with pyramid dilated convolutions,integrating multi-scale image information to enhance robustness against lighting interferences.This study introduces a Pseudo-Siamese structure-based disparity regression model that simplifies left-right image comparison,improving accuracy and efficiency.The model was evaluated using a dataset of stereo endoscopic videos captured by the Da Vinci surgical robot,comprising simulated silicone heart sequences and real heart video data.Experimental results demonstrate significant improvement in the network’s resistance to lighting interference without substantially increasing parameters.Moreover,the model exhibited faster convergence during training,contributing to overall performance enhancement.This study advances endoscopic image processing accuracy and has potential implications for surgical robot applications in complex environments. 展开更多
关键词 Parallax estimation parallax regression model self-supervised learning Pseudo-Siamese neural network pyramid dilated convolution binocular disparity estimation
在线阅读 下载PDF
3D Road Network Modeling and Road Structure Recognition in Internet of Vehicles
16
作者 Dun Cao Jia Ru +3 位作者 Jian Qin Amr Tolba Jin Wang Min Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1365-1384,共20页
Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transp... Internet of Vehicles (IoV) is a new system that enables individual vehicles to connect with nearby vehicles,people, transportation infrastructure, and networks, thereby realizing amore intelligent and efficient transportationsystem. The movement of vehicles and the three-dimensional (3D) nature of the road network cause the topologicalstructure of IoV to have the high space and time complexity.Network modeling and structure recognition for 3Droads can benefit the description of topological changes for IoV. This paper proposes a 3Dgeneral roadmodel basedon discrete points of roads obtained from GIS. First, the constraints imposed by 3D roads on moving vehicles areanalyzed. Then the effects of road curvature radius (Ra), longitudinal slope (Slo), and length (Len) on speed andacceleration are studied. Finally, a general 3D road network model based on road section features is established.This paper also presents intersection and road section recognition methods based on the structural features ofthe 3D road network model and the road features. Real GIS data from a specific region of Beijing is adopted tocreate the simulation scenario, and the simulation results validate the general 3D road network model and therecognitionmethod. Therefore, thiswork makes contributions to the field of intelligent transportation by providinga comprehensive approach tomodeling the 3Droad network and its topological changes in achieving efficient trafficflowand improved road safety. 展开更多
关键词 Internet of vehicles road networks 3D road model structure recognition GIS
在线阅读 下载PDF
Finite element model simulation and back propagation neural network modeling of void closure for an extra-thick plate during gradient temperature rolling
17
作者 Shun-hu Zhang Wen-hao Tian +4 位作者 Li-zhi Che Wei-jian Chen Yan Li Liang-wei Wan Zi-qi Yin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第9期2236-2247,共12页
The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element mode... The void closure behavior in a central extra-thick plate during the gradient temperature rolling was simulated and a back propagation(BP)neural network model was established.The thermal–mechanical finite element model of the gradient temperature rolling process was first developed and validated.The prediction error of the model for the rolling force is less than 2.51%,which has provided the feasibility of imbedding a defect in it.Based on the relevant data obtained from the simulation,the BP neural network was used to establish a prediction model for the compression degree of a void defect.After statistical analysis,80%of the data had a hit rate higher than 95%,and the hit rate of all data was higher than 90%,which indicates that the BP neural network can accurately predict the compression degree.Meanwhile,the comparisons between the results with the gradient temperature rolling and uniform temperature rolling,and between the results with the single-pass rolling and multi-pass rolling were discussed,which provides a theoretical reference for developing process parameters in actual production. 展开更多
关键词 BP neural network Finite element model Gradient temperature rolling Void defect Extra-thick plate
原文传递
Gated Neural Network-Based Unsteady Aerodynamic Modeling for Large Angles of Attack
18
作者 DENG Yongtao CHENG Shixin MI Baigang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期432-443,共12页
Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft ... Modeling of unsteady aerodynamic loads at high angles of attack using a small amount of experimental or simulation data to construct predictive models for unknown states can greatly improve the efficiency of aircraft unsteady aerodynamic design and flight dynamics analysis.In this paper,aiming at the problems of poor generalization of traditional aerodynamic models and intelligent models,an intelligent aerodynamic modeling method based on gated neural units is proposed.The time memory characteristics of the gated neural unit is fully utilized,thus the nonlinear flow field characterization ability of the learning and training process is enhanced,and the generalization ability of the whole prediction model is improved.The prediction and verification of the model are carried out under the maneuvering flight condition of NACA0015 airfoil.The results show that the model has good adaptability.In the interpolation prediction,the maximum prediction error of the lift and drag coefficients and the moment coefficient does not exceed 10%,which can basically represent the variation characteristics of the entire flow field.In the construction of extrapolation models,the training model based on the strong nonlinear data has good accuracy for weak nonlinear prediction.Furthermore,the error is larger,even exceeding 20%,which indicates that the extrapolation and generalization capabilities need to be further optimized by integrating physical models.Compared with the conventional state space equation model,the proposed method can improve the extrapolation accuracy and efficiency by 78%and 60%,respectively,which demonstrates the applied potential of this method in aerodynamic modeling. 展开更多
关键词 large angle of attack unsteady aerodynamic modeling gated neural networks generalization ability
在线阅读 下载PDF
Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network
19
作者 Jianyong Ao Yanping Li +2 位作者 Shengqing Hu Songyu Gao Qi Yao 《Energy Engineering》 EI 2024年第12期3825-3841,共17页
Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solv... Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load. 展开更多
关键词 Wind turbine BLADE fatigue load modeling deep neural network
在线阅读 下载PDF
Distributionally robust model predictive control for constrained robotic manipulators based on neural network modeling
20
作者 Yiheng YANG Kai ZHANG +1 位作者 Zhihua CHEN Bin LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第12期2183-2202,共20页
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint... A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation. 展开更多
关键词 robotic manipulator trajectory tracking control neural network(NN) distributionally robust optimization(DRO) model predictive control(MPC)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部