Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg...Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.展开更多
This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Th...This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.展开更多
Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many ...Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.展开更多
This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV i...This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.展开更多
Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemb...This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.展开更多
[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a...[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a guide,we simulated pyruvate production of E.coli,screened key genes in metabolic pathways,and developed gene editing procedures accordingly.We knocked out the acetate kinase gene ackA,phosphate acetyltransferase gene pta,alcohol dehydrogenase adhE,glycogen synthase gene glgA,glycogen phosphorylase gene glgP,phosphoribosyl pyrophosphate(PRPP)synthase gene prs,ribose 1,5-bisphosphate phosphokinase gene phnN,and transporter encoding gene proP.Furthermore,we knocked in the transporter encoding gene ompC,flavonoid toxin gene fldA,and D-serine ammonia lyase gene dsdA.[Results]A shake flask process with the genetically edited mutant strain MG1655-6-2 under anaerobic conditions produced pyruvate at a titer of 10.46 g/L and a yield of 0.69 g/g.Metabolomic analysis revealed a significant increase in the pyruvate level in the fermentation broth,accompanied by notable decreases in the levels of certain related metabolic byproducts.Through 5 L fed-batch fermentation and an adaptive laboratory evolution,the strain finally achieved a pyruvate titer of 45.86 g/L.[Conclusion]This study illustrated the efficacy of a gene editing strategy predicted by a genome-scale metabolic network model in enhancing pyruvate accumulation in E.coli under anaerobic conditions and provided novel insights for microbial metabolic engineering.展开更多
In recent years,there has been a growing interest in using artificial intelligence(AI)for rainfall-runoff modelling,as it has shown promising adaptability in this context.The current study involved the use of six dist...In recent years,there has been a growing interest in using artificial intelligence(AI)for rainfall-runoff modelling,as it has shown promising adaptability in this context.The current study involved the use of six distinct AI models to simulate monthly rainfall-runoff modelling in the Bardha watershed,India.These models included the artificial neural network(ANN),k-nearest neighbour regression model(KNN),extreme gradient boosting(XGBoost)regression model,random forest regression model(RF),convolutional neural network(CNN),and CNN-RNN(convolutional recurrent neural network).The years 2003-2007 are classified as the calibration or training period,while the years 2008-2009 are classified as the validation or testing period for the span of time 2003 to 2009.The available rainfall,maximum and minimum temperatures,and discharge data were collected and utilized in the models.To compare the performance of the models,five criteria were employed:R^(2),NSE,MAE,RMSE,and PBIAS.The CNN-RNN model simulates the rainfall-runoff model in the Bardha watershed best in both the training and testing periods(training:R^(2) is 0.99,NSE is 0.99,MAE is 1.76,RMSE is 3.11,and PBIAS is1.45;testing:R^(2) is 0.97,NSE is 0.97,MAE is 2.05,RMSE is 3.60,and PBIAS is3.94).These results demonstrate the superior performance of the CNN-RNN model in simulating monthly rainfall-runoff modelling when compared to the other models used in the study.The findings suggest that the CNN-RNN model could be a valuable tool for various applications related to sustainable water resource management,flood control,and environmental planning.展开更多
Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with region...Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.展开更多
Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weight...Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.展开更多
In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu...In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.展开更多
Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smar...Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios.展开更多
Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polym...Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well.展开更多
To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks o...To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.展开更多
Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead t...Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead to severe tumor advancement.This study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis,with an architecture that integrates a Vision Transformer,a bespoke convolutional neural network(CNN),and an Xception module.They were evaluated using two benchmark datasets,HAM10000 and Skin Cancer ISIC.On the HAM10000,the model achieves a precision of 95.46%,an accuracy of 96.74%,a recall of 96.27%,specificity of 96.00%and an F1-Score of 95.86%.It obtains an accuracy of 93.19%,a precision of 93.25%,a recall of 92.80%,a specificity of 92.89%and an F1-Score of 93.19%on the Skin Cancer ISIC dataset.The findings demonstrate that the model that was proposed is robust and trustworthy when it comes to the classification of skin lesions.In addition,the utilization of Explainable AI techniques,such as Grad-CAM visualizations,assists in highlighting the most significant lesion areas that have an impact on the decisions that are made by the model.展开更多
The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal ...The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells.展开更多
The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system...The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.展开更多
Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables...Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone.展开更多
Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction ac...Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction accuracy still presents signifcant challenges.In this study,we applied CNNs to predict swine traits using previously published data.Specifcally,we extensively evaluated the CNN model's performance by employing various sets of single nucleotide polymorphisms(SNPs)and concluded that the CNN model achieved optimal performance when utilizing SNP sets comprising 1,000 SNPs.Furthermore,we adopted a novel approach using the one-hot encoding method that transforms the 16 different genotypes into sets of eight binary variables.This innovative encoding method signifcantly enhanced the CNN's prediction accuracy for swine traits,outperforming the traditional one-hot encoding techniques.Our fndings suggest that the expanded one-hot encoding method can improve the accuracy of DL methods in the genomic prediction of swine agricultural economic traits.This discovery has significant implications for swine breeding programs,where genomic prediction is pivotal in improving breeding strategies.Furthermore,future research endeavors can explore additional enhancements to DL methods by incorporating advanced data pre-processing techniques.展开更多
Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping win...Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles.展开更多
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd..(Grant No.H20230317)。
文摘Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.
基金supported by the Fundamental Research Funds for the Liaoning Universities(LJ212410146025).
文摘This study examines the effectiveness of artificial intelligence techniques in generating high-quality environmental data for species introductory site selection systems.Combining Strengths,Weaknesses,Opportunities,Threats(SWOT)analysis data with Variation Autoencoder(VAE)and Generative AdversarialNetwork(GAN)the network framework model(SAE-GAN),is proposed for environmental data reconstruction.The model combines two popular generative models,GAN and VAE,to generate features conditional on categorical data embedding after SWOT Analysis.The model is capable of generating features that resemble real feature distributions and adding sample factors to more accurately track individual sample data.Reconstructed data is used to retain more semantic information to generate features.The model was applied to species in Southern California,USA,citing SWOT analysis data to train the model.Experiments show that the model is capable of integrating data from more comprehensive analyses than traditional methods and generating high-quality reconstructed data from them,effectively solving the problem of insufficient data collection in development environments.The model is further validated by the Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)classification assessment commonly used in the environmental data domain.This study provides a reliable and rich source of training data for species introduction site selection systems and makes a significant contribution to ecological and sustainable development.
基金supported by the National Natural Science Foundation of China(Grant No.42076214)Natural Science Foundation of Shandong Province(Grant No.ZR2024QD057).
文摘Timely and accurate forecasting of storm surges can effectively prevent typhoon storm surges from causing large economic losses and casualties in coastal areas.At present,numerical model forecasting consumes too many resources and takes too long to compute,while neural network forecasting lacks regional data to train regional forecasting models.In this study,we used the DUAL wind model to build typhoon wind fields,and constructed a typhoon database of 75 processes in the northern South China Sea using the coupled Advanced Circulation-Simulating Waves Nearshore(ADCIRC-SWAN)model.Then,a neural network with a Res-U-Net structure was trained using the typhoon database to forecast the typhoon processes in the validation dataset,and an excellent storm surge forecasting effect was achieved in the Pearl River Estuary region.The storm surge forecasting effect of stronger typhoons was improved by adding a branch structure and transfer learning.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-RP23066).
文摘This study directs the discussion of HIV disease with a novel kind of complex dynamical generalized and piecewise operator in the sense of classical and Atangana Baleanu(AB)derivatives having arbitrary order.The HIV infection model has a susceptible class,a recovered class,along with a case of infection divided into three sub-different levels or categories and the recovered class.The total time interval is converted into two,which are further investigated for ordinary and fractional order operators of the AB derivative,respectively.The proposed model is tested separately for unique solutions and existence on bi intervals.The numerical solution of the proposed model is treated by the piece-wise numerical iterative scheme of Newtons Polynomial.The proposed method is established for piece-wise derivatives under natural order and non-singular Mittag-Leffler Law.The cross-over or bending characteristics in the dynamical system of HIV are easily examined by the aspect of this research having a memory effect for controlling the said disease.This study uses the neural network(NN)technique to obtain a better set of weights with low residual errors,and the epochs number is considered 1000.The obtained figures represent the approximate solution and absolute error which are tested with NN to train the data accurately.
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
文摘This study introduces an innovative“Big Model”strategy to enhance Bridge Structural Health Monitoring(SHM)using a Convolutional Neural Network(CNN),time-frequency analysis,and fine element analysis.Leveraging ensemble methods,collaborative learning,and distributed computing,the approach effectively manages the complexity and scale of large-scale bridge data.The CNN employs transfer learning,fine-tuning,and continuous monitoring to optimize models for adaptive and accurate structural health assessments,focusing on extracting meaningful features through time-frequency analysis.By integrating Finite Element Analysis,time-frequency analysis,and CNNs,the strategy provides a comprehensive understanding of bridge health.Utilizing diverse sensor data,sophisticated feature extraction,and advanced CNN architecture,the model is optimized through rigorous preprocessing and hyperparameter tuning.This approach significantly enhances the ability to make accurate predictions,monitor structural health,and support proactive maintenance practices,thereby ensuring the safety and longevity of critical infrastructure.
基金supported by the Hebei Provincial Key Research and Development Project(21372803D)。
文摘[Objective]To construct an Escherichia coli mutant strain that accumulates pyruvate by genetic modification guided by the genome-scale metabolic network model.[Methods]Using a genome-scale metabolic network model as a guide,we simulated pyruvate production of E.coli,screened key genes in metabolic pathways,and developed gene editing procedures accordingly.We knocked out the acetate kinase gene ackA,phosphate acetyltransferase gene pta,alcohol dehydrogenase adhE,glycogen synthase gene glgA,glycogen phosphorylase gene glgP,phosphoribosyl pyrophosphate(PRPP)synthase gene prs,ribose 1,5-bisphosphate phosphokinase gene phnN,and transporter encoding gene proP.Furthermore,we knocked in the transporter encoding gene ompC,flavonoid toxin gene fldA,and D-serine ammonia lyase gene dsdA.[Results]A shake flask process with the genetically edited mutant strain MG1655-6-2 under anaerobic conditions produced pyruvate at a titer of 10.46 g/L and a yield of 0.69 g/g.Metabolomic analysis revealed a significant increase in the pyruvate level in the fermentation broth,accompanied by notable decreases in the levels of certain related metabolic byproducts.Through 5 L fed-batch fermentation and an adaptive laboratory evolution,the strain finally achieved a pyruvate titer of 45.86 g/L.[Conclusion]This study illustrated the efficacy of a gene editing strategy predicted by a genome-scale metabolic network model in enhancing pyruvate accumulation in E.coli under anaerobic conditions and provided novel insights for microbial metabolic engineering.
文摘In recent years,there has been a growing interest in using artificial intelligence(AI)for rainfall-runoff modelling,as it has shown promising adaptability in this context.The current study involved the use of six distinct AI models to simulate monthly rainfall-runoff modelling in the Bardha watershed,India.These models included the artificial neural network(ANN),k-nearest neighbour regression model(KNN),extreme gradient boosting(XGBoost)regression model,random forest regression model(RF),convolutional neural network(CNN),and CNN-RNN(convolutional recurrent neural network).The years 2003-2007 are classified as the calibration or training period,while the years 2008-2009 are classified as the validation or testing period for the span of time 2003 to 2009.The available rainfall,maximum and minimum temperatures,and discharge data were collected and utilized in the models.To compare the performance of the models,five criteria were employed:R^(2),NSE,MAE,RMSE,and PBIAS.The CNN-RNN model simulates the rainfall-runoff model in the Bardha watershed best in both the training and testing periods(training:R^(2) is 0.99,NSE is 0.99,MAE is 1.76,RMSE is 3.11,and PBIAS is1.45;testing:R^(2) is 0.97,NSE is 0.97,MAE is 2.05,RMSE is 3.60,and PBIAS is3.94).These results demonstrate the superior performance of the CNN-RNN model in simulating monthly rainfall-runoff modelling when compared to the other models used in the study.The findings suggest that the CNN-RNN model could be a valuable tool for various applications related to sustainable water resource management,flood control,and environmental planning.
基金funding support from the National Natural Science Foundation of China(Grant Nos.U22A20594,52079045)Hong-Zhi Cui acknowledges the financial support of the China Scholarship Council(Grant No.CSC:202206710014)for his research at Universitat Politecnica de Catalunya,Barcelona.
文摘Landslide susceptibility mapping(LSM)plays a crucial role in assessing geological risks.The current LSM techniques face a significant challenge in achieving accurate results due to uncertainties associated with regional-scale geotechnical parameters.To explore rainfall-induced LSM,this study proposes a hybrid model that combines the physically-based probabilistic model(PPM)with convolutional neural network(CNN).The PPM is capable of effectively capturing the spatial distribution of landslides by incorporating the probability of failure(POF)considering the slope stability mechanism under rainfall conditions.This significantly characterizes the variation of POF caused by parameter uncertainties.CNN was used as a binary classifier to capture the spatial and channel correlation between landslide conditioning factors and the probability of landslide occurrence.OpenCV image enhancement technique was utilized to extract non-landslide points based on the POF of landslides.The proposed model comprehensively considers physical mechanics when selecting non-landslide samples,effectively filtering out samples that do not adhere to physical principles and reduce the risk of overfitting.The results indicate that the proposed PPM-CNN hybrid model presents a higher prediction accuracy,with an area under the curve(AUC)value of 0.85 based on the landslide case of the Niangniangba area of Gansu Province,China compared with the individual CNN model(AUC=0.61)and the PPM(AUC=0.74).This model can also consider the statistical correlation and non-normal probability distributions of model parameters.These results offer practical guidance for future research on rainfall-induced LSM at the regional scale.
基金supported by the Key R&D Projects in Jiangsu Province(BE2021729)the Key Primary Research Project of Primary Strengthening Program(KYZYJKKCJC23001).
文摘Multi-agent systems often require good interoperability in the process of completing their assigned tasks.This paper first models the static structure and dynamic behavior of multiagent systems based on layered weighted scale-free community network and susceptible-infected-recovered(SIR)model.To solve the problem of difficulty in describing the changes in the structure and collaboration mode of the system under external factors,a two-dimensional Monte Carlo method and an improved dynamic Bayesian network are used to simulate the impact of external environmental factors on multi-agent systems.A collaborative information flow path optimization algorithm for agents under environmental factors is designed based on the Dijkstra algorithm.A method for evaluating system interoperability is designed based on simulation experiments,providing reference for the construction planning and optimization of organizational application of the system.Finally,the feasibility of the method is verified through case studies.
基金partially supported by the National Natural Science Foundation of China(62161016)the Key Research and Development Project of Lanzhou Jiaotong University(ZDYF2304)+1 种基金the Beijing Engineering Research Center of Highvelocity Railway Broadband Mobile Communications(BHRC-2022-1)Beijing Jiaotong University。
文摘In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.
基金the International Scientific Complex“Astana”was funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680345).
文摘Wireless Sensor Networks(WSN)have gained significant attention over recent years due to their extensive applications in various domains such as environmentalmonitoring,healthcare systems,industrial automation,and smart cities.However,such networks are inherently vulnerable to different types of attacks because they operate in open environments with limited resources and constrained communication capabilities.Thepaper addresses challenges related to modeling and analysis of wireless sensor networks and their susceptibility to attacks.Its objective is to create versatile modeling tools capable of detecting attacks against network devices and identifying anomalies caused either by legitimate user errors or malicious activities.A proposed integrated approach for data collection,preprocessing,and analysis in WSN outlines a series of steps applicable throughout both the design phase and operation stage.This ensures effective detection of attacks and anomalies within WSNs.An introduced attackmodel specifies potential types of unauthorized network layer attacks targeting network nodes,transmitted data,and services offered by the WSN.Furthermore,a graph-based analytical framework was designed to detect attacks by evaluating real-time events from network nodes and determining if an attack is underway.Additionally,a simulation model based on sequences of imperative rules defining behaviors of both regular and compromised nodes is presented.Overall,this technique was experimentally verified using a segment of a WSN embedded in a smart city infrastructure,simulating a wormhole attack.Results demonstrate the viability and practical significance of the technique for enhancing future information security measures.Validation tests confirmed high levels of accuracy and efficiency when applied specifically to detecting wormhole attacks targeting routing protocols in WSNs.Precision and recall rates averaged above the benchmark value of 0.95,thus validating the broad applicability of the proposed models across varied scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.12202339 and 12172273)Xi’an Jiaotong University Tang Scholar.
文摘Current hyperelastic constitutive models of hydrogels face difficulties in capturing the stress-strain behaviors of hydrogels under extremely large deformation because the effect of non-affine deformation of the polymer network inside is ambiguous.In this work,we construct periodic random network(PRN)models for the effective polymer network in hydrogels and investigate the non-affine deformation of polymer chains intrinsically originates from the structural randomness from bottom up.The non-affine deformation in PRN models is manifested as the actual stretch of polymer chains randomly deviated from the chain stretch predicted by affine assumption,and quantified by a non-affine ratio of each polymer chain.It is found that the non-affine ratios of polymer chains are closely related to bulk deformation state,chain orientation,and initial chain elongation.By fitting the non-affine ratio of polymer chains in all PRN models,we propose a non-affine constitutive model for the hydrogel polymer network based on micro-sphere model.The stress-strain curves of the proposed constitutive models under uniaxial tension condition agree with the simulation results of different PRN models of hydrogels very well.
文摘To cater the need for real-time crack monitoring of infrastructural facilities,a CNN-regression model is proposed to directly estimate the crack properties from patches.RGB crack images and their corresponding masks obtained from a public dataset are cropped into patches of 256 square pixels that are classified with a pre-trained deep convolution neural network,the true positives are segmented,and crack properties are extracted using two different methods.The first method is primarily based on active contour models and level-set segmentation and the second method consists of the domain adaptation of a mathematical morphology-based method known as FIL-FINDER.A statistical test has been performed for the comparison of the stated methods and a database prepared with the more suitable method.An advanced convolution neural network-based multi-output regression model has been proposed which was trained with the prepared database and validated with the held-out dataset for the prediction of crack-length,crack-width,and width-uncertainty directly from input image patches.The pro-posed model has been tested on crack patches collected from different locations.Huber loss has been used to ensure the robustness of the proposed model selected from a set of 288 different variations of it.Additionally,an ablation study has been conducted on the top 3 models that demonstrated the influence of each network component on the pre-diction results.Finally,the best performing model HHc-X among the top 3 has been proposed that predicted crack properties which are in close agreement to the ground truths in the test data.
文摘Skin cancer is the most prevalent cancer globally,primarily due to extensive exposure to Ultraviolet(UV)radiation.Early identification of skin cancer enhances the likelihood of effective treatment,as delays may lead to severe tumor advancement.This study proposes a novel hybrid deep learning strategy to address the complex issue of skin cancer diagnosis,with an architecture that integrates a Vision Transformer,a bespoke convolutional neural network(CNN),and an Xception module.They were evaluated using two benchmark datasets,HAM10000 and Skin Cancer ISIC.On the HAM10000,the model achieves a precision of 95.46%,an accuracy of 96.74%,a recall of 96.27%,specificity of 96.00%and an F1-Score of 95.86%.It obtains an accuracy of 93.19%,a precision of 93.25%,a recall of 92.80%,a specificity of 92.89%and an F1-Score of 93.19%on the Skin Cancer ISIC dataset.The findings demonstrate that the model that was proposed is robust and trustworthy when it comes to the classification of skin lesions.In addition,the utilization of Explainable AI techniques,such as Grad-CAM visualizations,assists in highlighting the most significant lesion areas that have an impact on the decisions that are made by the model.
基金The National Key R&D Program,Grant/Award Number:2023YFC2907203National Natural Science Foundation of China,Grant/Award Numbers:52374121,52074121。
文摘The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells.
文摘The topology structure of the artificial neural network is an intelligent control model,which is used for the intelligent vehicle control system and household sweeping robot.When setting the intelligent control system,the connection point of each network is regarded as a neuron in the nervous system,and each connection point has input and output functions.Only when the input of nodes reaches a certain threshold can the output function of nodes be stimulated.Using the networking mode of the artificial neural network model,the mobile node can output in multiple directions.If the input direction of a certain path is the same as that of other nodes,it can choose to avoid and choose another path.The weighted value of each path between nodes is different,which means that the influence of the front node on the current node varies.The control method based on the artificial neural network model can be applied to vehicle control,household sweeping robots,and other fields,and a relatively optimized scheme can be obtained from the aspect of time and energy consumption.
基金supported by the National Natural Science Foundation of China(No.42061065)the Third Xinjiang Comprehensive Scientific Expedition,China(No.2022xjkk03010102).
文摘Root zone soil moisture(RZSM)plays a critical role in land-atmosphere hydrological cycles and serves as the primary water source for vegetation growth.However,the correlations between RZSM and its associated variables,including surface soil moisture(SSM),often exhibit nonlinearities that are challenging to identify and quantify using conventional statistical techniques.Therefore,this study presents a hybrid convolutional neural network(CNN)-long short-term memory neural network(LSTM)-attention(CLA)model for predicting RZSM.Owing to the scarcity of soil moisture(SM)observation data,the physical model Hydrus-1D was employed to simulate a comprehensive dataset of spatial-temporal SM.Meteorological data and moderate resolution imaging spectroradiometer vegetation characterization parameters were used as predictor variables for the training and validation of the CLA model.The results of the CLA model for SM prediction in the root zone were significantly enhanced compared with those of the traditional LSTM and CNN-LSTM models.This was particularly notable at the depth of 80–100 cm,where the fitness(R^(2))reached nearly 0.9298.Moreover,the root mean square error of the CLA model was reduced by 49%and 57%compared with those of the LSTM and CNN-LSTM models,respectively.This study demonstrates that the integration of physical modeling and deep learning methods provides a more comprehensive and accurate understanding of spatial-temporal SM variations in the root zone.
基金supported by the National Natural Science Foundation of China(32102513)the National Key Scientific Research Project(2023YFF1001100)+1 种基金the Shenzhen Innovation and Entrepreneurship PlanMajor Special Project of Science and Technology,China(KJZD20230923115003006)the Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ZDRW202006)。
文摘Deep learning(DL)methods like multilayer perceptrons(MLPs)and convolutional neural networks(CNNs)have been applied to predict the complex traits in animal and plant breeding.However,improving the genomic prediction accuracy still presents signifcant challenges.In this study,we applied CNNs to predict swine traits using previously published data.Specifcally,we extensively evaluated the CNN model's performance by employing various sets of single nucleotide polymorphisms(SNPs)and concluded that the CNN model achieved optimal performance when utilizing SNP sets comprising 1,000 SNPs.Furthermore,we adopted a novel approach using the one-hot encoding method that transforms the 16 different genotypes into sets of eight binary variables.This innovative encoding method signifcantly enhanced the CNN's prediction accuracy for swine traits,outperforming the traditional one-hot encoding techniques.Our fndings suggest that the expanded one-hot encoding method can improve the accuracy of DL methods in the genomic prediction of swine agricultural economic traits.This discovery has significant implications for swine breeding programs,where genomic prediction is pivotal in improving breeding strategies.Furthermore,future research endeavors can explore additional enhancements to DL methods by incorporating advanced data pre-processing techniques.
基金supported by National Natural Science Foundation of China under Grant No.62236007the specialized research projects of Huanjiang Laboratory.
文摘Modeling the dynamics of flapping wing aerial vehicle is challenging due to the complexity of aerodynamic effects and mechanical structures.The aim of this work is to develop an accurate dynamics model of flapping wing aerial vehicle based on real flight data.We propose a modeling framework that combines rigid body dynamics with a neural network to predict aerodynamic effects.By incorporating the concept of flapping phase,we significantly enhance the network’s ability to analyze transient aerodynamic behavior.We design and utilize a phase-functioned neural network structure for aerodynamic predictions and train the network using real flight data.Evaluation results show that the network can predict aerodynamic effects and demonstrate clear physical significance.We verify that the framework can be used for dynamic propagation and is expected to be utilized for building simulators for flapping wing aerial vehicles.