In magnetic topological materials,the interplay between magnetism and nontrivial topology gives rise to exotic quantum transport phenomena,including the anomalous Hall effect and anomalous Nernst effect.Here,we report...In magnetic topological materials,the interplay between magnetism and nontrivial topology gives rise to exotic quantum transport phenomena,including the anomalous Hall effect and anomalous Nernst effect.Here,we report the observation of intrinsic topological Hall and topological Nernst effects below the Néel temperature(T_(N)=25 K)in the antiferromagnetic(AFM)topological insulator Mn Bi_(2)Te_(4).The maximum of topological Hall resistivity reaches approximately 9μΩ·cm at 2 K,while the topological Nernst signal attains a peak value of 0.1μV/K near 10 K.These anomalous transport behaviors originate from the net Berry curvature induced by the non-collinear spin structure in the canted AFM state.Our results suggest a close connection between the topological thermoelectric effect and non-collinear AFM order in AFM topological insulators.展开更多
Berry curvature describes the intrinsic geometric property of electronic band structure,crucial for governing emergent transport phenomena.As a typical Berry-curvature-related property,the anomalous Nernst effect prob...Berry curvature describes the intrinsic geometric property of electronic band structure,crucial for governing emergent transport phenomena.As a typical Berry-curvature-related property,the anomalous Nernst effect probes local Berry curvature near the Fermi surface,whereas the anomalous Hall effect integrates contributions across all occupied states.Thus,the anomalous Nernst effect is a superior probe for detecting subtle evolution of Berry curvature near the Fermi level;however,their relation remains elusive.Here,we demonstrate giant anomalous Nernst angles induced by Berry curvature in layered itinerant ferromagnets Fe_(3)GaTe_(2)and Fe_(5)GeTe_(2).Their maximum values(≈0.33 for Fe_(3)GaTe_(2)and≈0.41 for Fe_(5)GeTe_(2))are one order of magnitude larger than those of traditional ferromagnets(θ_(AN)^(max)<0.02).Scaling analysis of anomalous Hall effect in these two systems further suggests these giant angles originate from intrinsic Berry curvature.These findings indicate Berrycurvature-dominated regimes,and establish these materials for high-performance spin-caloritronic devices.展开更多
Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects o...Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects offer new possibilities.Here,we present a comprehensive investigation of the thermoelectric properties of 1T-TiSe_(2),focusing on these effects around the charge density wave transition(≈200 K).The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450μVK^(-1) at 184 K,surpassing the Seebeck coefficient.Furthermore,1T-TiSe_(2) exhibits a remarkably broad temperature range(170-400 K)with a Thomson coefficient exceeding 190μV K^(-1),a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges.Additionally,the Nernst coefficient exhibits an unusual temperature dependence,increasing with temperature in the normal phase,which we attribute to bipolar conduction effects.The combination of solid-solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.展开更多
In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method an...In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon's area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.展开更多
基金supported in part by the Natural Science Foundation of China(Grant No.U1932155)the Hangzhou Joint Fund of the Zhejiang Provincial Natural Science Foundation of China(Grant No.LHZSZ24A040001)+4 种基金the National Key R&D Program of China(Grant No.2022YFA1602602)the National Key R&D Program of China(Grant Nos.2022YFA1403800 and 20-23YFA1406500)the China Postdoctoral Science Foundation(Grant No.2023-M730011)the National Natural Science Foundation of China(Grant No.12274459)supported by the HZNU Scientific Research and Innovation Team Project(No.TD2025013)。
文摘In magnetic topological materials,the interplay between magnetism and nontrivial topology gives rise to exotic quantum transport phenomena,including the anomalous Hall effect and anomalous Nernst effect.Here,we report the observation of intrinsic topological Hall and topological Nernst effects below the Néel temperature(T_(N)=25 K)in the antiferromagnetic(AFM)topological insulator Mn Bi_(2)Te_(4).The maximum of topological Hall resistivity reaches approximately 9μΩ·cm at 2 K,while the topological Nernst signal attains a peak value of 0.1μV/K near 10 K.These anomalous transport behaviors originate from the net Berry curvature induced by the non-collinear spin structure in the canted AFM state.Our results suggest a close connection between the topological thermoelectric effect and non-collinear AFM order in AFM topological insulators.
基金supported by the National Key Research and Development Program of China(Grant Nos.2024YFA1408104,2021YFA1202901,and 2022YFA1204001)the National Natural Science Foundation of China(Grant Nos.92365203,U24A6002,52302180,and U21A2086)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20243011)the Hebei Natural Science Foundation No.E2023203002).
文摘Berry curvature describes the intrinsic geometric property of electronic band structure,crucial for governing emergent transport phenomena.As a typical Berry-curvature-related property,the anomalous Nernst effect probes local Berry curvature near the Fermi surface,whereas the anomalous Hall effect integrates contributions across all occupied states.Thus,the anomalous Nernst effect is a superior probe for detecting subtle evolution of Berry curvature near the Fermi level;however,their relation remains elusive.Here,we demonstrate giant anomalous Nernst angles induced by Berry curvature in layered itinerant ferromagnets Fe_(3)GaTe_(2)and Fe_(5)GeTe_(2).Their maximum values(≈0.33 for Fe_(3)GaTe_(2)and≈0.41 for Fe_(5)GeTe_(2))are one order of magnitude larger than those of traditional ferromagnets(θ_(AN)^(max)<0.02).Scaling analysis of anomalous Hall effect in these two systems further suggests these giant angles originate from intrinsic Berry curvature.These findings indicate Berrycurvature-dominated regimes,and establish these materials for high-performance spin-caloritronic devices.
基金S.A.and M.Z.acknowledge support by NSF,grant number 2230352S.S.D.acknowledges support from the UVA Research Innovation AwardK.S.D.and D.L.work on TMDs has been supported by National Science Foundation Grant No.221949.
文摘Thermoelectric coolers utilizing the Peltier effect have dominated the field of solid-state cooling but their efficiency is hindered by material limitations.Alternative routes based on the Thomson and Nernst effects offer new possibilities.Here,we present a comprehensive investigation of the thermoelectric properties of 1T-TiSe_(2),focusing on these effects around the charge density wave transition(≈200 K).The abrupt Fermi surface reconstruction associated with this transition leads to an exceptional peak in the Thomson coefficient of 450μVK^(-1) at 184 K,surpassing the Seebeck coefficient.Furthermore,1T-TiSe_(2) exhibits a remarkably broad temperature range(170-400 K)with a Thomson coefficient exceeding 190μV K^(-1),a characteristic highly desirable for the development of practical Thomson coolers with extended operational ranges.Additionally,the Nernst coefficient exhibits an unusual temperature dependence,increasing with temperature in the normal phase,which we attribute to bipolar conduction effects.The combination of solid-solid pure electronic phase transition to a semimetallic phase with bipolar transport is identified as responsible for the unusual Nernst trend and the unusually large Thomson coefficient over a broad temperature range.
文摘In this paper, by using quantum statistical method, we obtain the partition function of Bose field and Fermi field on the background of the 5-dimensional rotating black hole. Then via the improved brick-wall method and membrane model, we calculate the entropy of Bose field and Fermi field of the black hole. And it is obtained that the entropy of the black hole is not only related to the area of the outer horizon but also is the function of inner horizon's area. In our results, there are not the left out term and the divergent logarithmic term in the original brick-wall method.The doubt that why the entropy of the scalar or Dirac field outside the event horizon is the entropy of the black hole in the original brick-wall method does not exist. The influence of spinning degeneracy of particles on entropy of the black hole is also given. It is shown that the entropy determined by the areas of the inner and outer horizons will approach zero,when the radiation temperature of the black hole approaches absolute zero. It satisfies Nernst theorem. The entropy can be taken as the Planck absolute entropy. We provide a way to study higher dimensional black hole.