ZrCoRE(RE denotes rare earth elements)non-evaporable getter films have significant applications in vacuum packaging of micro-electro mechanical system devices because of their excellent gas adsorption performance,low ...ZrCoRE(RE denotes rare earth elements)non-evaporable getter films have significant applications in vacuum packaging of micro-electro mechanical system devices because of their excellent gas adsorption performance,low activation temperature and environmental friendliness.The films were deposited using DC magnetron sputtering with argon and krypton gases under various deposition pressures.The effects of sputtering gas type and pressure on the morphology and hydrogen adsorption performance of ZrCoRE films were investigated.Results show that the films prepared in Ar exhibit a relatively dense structure with fewer grain boundaries.The increase in Ar pressure results in more grain boundaries and gap structures in the films.In contrast,films deposited in Kr display a higher density of grain boundaries and cluster structures,and the films have an obvious columnar crystal structure,with numerous interfaces and gaps distributed between the columnar structures,providing more paths for gas diffusion.As Kr pressure increases,the film demonstrates more pronounced continuous columnar structure growth,accompanied by deeper and wider grain boundaries.This structural configuration provides a larger specific surface area,which significantly improves the hydrogen adsorption speed and capacity.Consequently,high Ar and Kr pressures are beneficial to improve the adsorption performance.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+...Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.展开更多
With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our resu...With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.展开更多
基金National Natural Science Foundation of China(62171208)Natural Science Foundation of Gansu Province(23JRRA1355)。
文摘ZrCoRE(RE denotes rare earth elements)non-evaporable getter films have significant applications in vacuum packaging of micro-electro mechanical system devices because of their excellent gas adsorption performance,low activation temperature and environmental friendliness.The films were deposited using DC magnetron sputtering with argon and krypton gases under various deposition pressures.The effects of sputtering gas type and pressure on the morphology and hydrogen adsorption performance of ZrCoRE films were investigated.Results show that the films prepared in Ar exhibit a relatively dense structure with fewer grain boundaries.The increase in Ar pressure results in more grain boundaries and gap structures in the films.In contrast,films deposited in Kr display a higher density of grain boundaries and cluster structures,and the films have an obvious columnar crystal structure,with numerous interfaces and gaps distributed between the columnar structures,providing more paths for gas diffusion.As Kr pressure increases,the film demonstrates more pronounced continuous columnar structure growth,accompanied by deeper and wider grain boundaries.This structural configuration provides a larger specific surface area,which significantly improves the hydrogen adsorption speed and capacity.Consequently,high Ar and Kr pressures are beneficial to improve the adsorption performance.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金Supported by the Academic Achievement Re-cultivation Projects of Jingdezhen Ceramic University(Grant Nos.215/20506341215/20506277)the Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)。
文摘Assume that{a_(i),−∞<i<∞}is an absolutely summable sequence of real numbers.We establish the complete q-order moment convergence for the partial sums of moving average processes{X_(n)=Σ_(i=−∞)^(∞)a_(i)Y_(i+n),n≥1}under some proper conditions,where{Yi,-∞<i<∞}is a doubly infinite sequence of negatively dependent random variables under sub-linear expectations.These results extend and complement the relevant results in probability space.
基金supported by the National Natural Science Foundation of China (Grant No. 12074329)Nanhu Scholars Program for Young Scholars of Xinyang Normal University。
文摘With a three-dimensional semiclassical ensemble method, we theoretically investigated the nonsequential double ionization of Ar driven by the spatially inhomogeneous few-cycle negatively chirped laser pulses. Our results show that the recollision time window can be precisely controlled within an isolated time interval of several hundred attoseconds, which is useful for understanding the subcycle correlated electron dynamics. More interestingly, the correlated electron momentum distribution (CEMD) exhibits a strong dependence on laser intensity. That is, at lower laser intensity, CEMD is located in the first quadrant. As the laser intensity increases,CEMD shifts almost completely to the second and fourth quadrants, and then gradually to the third quadrant.The underlying physics governing the CEMD's dependence on laser intensity is explained.
基金The National Natural Science Foundation of China under Grant(10774108) the Special Researcn Foundation for the Doctoral Program of Higher Education under Grant(20050285002)