期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Using negative exponential function to characterize built-up land density along slope gradient for 19 urban areas in China
1
作者 SONG Yufei PENG Qiuzhi +2 位作者 LU Jiating LYU Leting PENG Fengcan 《Journal of Mountain Science》 SCIE CSCD 2024年第11期3859-3870,共12页
In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urb... In China,numerous cities are expanding into sloping land,yet the quantitative distribution patterns of urban built-up land density along the slope gradient remain unclear,limiting the understanding of sloping land urbanization.In this paper,a simple negative exponential function was presented to verify its applicability in 19 typical sloping urban areas in China.The function fits well for all case urban areas(R^(2)≥0.951,p<0.001).The parameters of this function clearly describe two fundamental attributes:initial value a and decline rate b.Between 2000 and 2020,a tends to increase,while b tends to decrease in all urban areas,confirming the hypothesis of mutual promotion between flatland densification and sloping land expansion.Multiple regression analysis indicates that the built-up land density and the ruggedness of background land can explain 70.7%of a,while the average slope ratio of built-up land to background land,the built-up land density and the built-up land area can explain 82.1%of b.This work provides a quantitative investigative tool for distribution of urban built-up land density along slope gradient,aiding in the study of the globally increasing phenomenon of sloping land urbanization from a new perspective. 展开更多
关键词 negative exponential function Urban built up land density Slope gradient Sloping urban area Sloping land urbanization Mountain area
原文传递
An empirical approach to predict regional organic carbon in deep soils
2
作者 Jingjing WANG Xiaorong WEI +4 位作者 Xiaoxu JIA Mingbin HUANG Zhipeng LIU Yufei YAO Ming’an SHAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2023年第3期583-593,共11页
Deep soil organic carbon(SOC)plays an important role in carbon cycling.Precisely predicting deep SOC at the regional scale is crucial for the accurate assessment of carbon sequestration potential in soils but has been... Deep soil organic carbon(SOC)plays an important role in carbon cycling.Precisely predicting deep SOC at the regional scale is crucial for the accurate assessment of carbon sequestration potential in soils but has been challenging for a century.Herein,we developed a depth distribution function-based empirical approach to predict SOC in deep soils at the regional scale.We validated this approach with a dataset from four regions of the world and examined the application of this approach in China’s Loess Plateau.We found that among the reported depth distribution functions describing vertical patterns of SOC,the negative exponential function performed best in fitting SOC along the soil profile in various regions.Moreover,the parameters(i.e.,Ceand k)of the negative exponential function were linearly correlated to surface SOC(0–20 cm)and the changing rates of SOC within the topsoil(0–40 cm).Based on the above relationships,the empirical equations for predicting the negative exponential parameters are established.The validation results from site-specific and regional dataset showed that combining the negative exponential function and such empirical equations can precisely predict SOC concentration in soils down to 500 cm depth.Our study provides a simple,rapid and accurate method for predicting deep soil SOC at the regional scale,which could simplify the assessment of deep soil SOC in various regions. 展开更多
关键词 Deep SOC Empirical approach negative exponential function Depth distribution Spatial pattern
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部