Nano-silicon(nano-Si)and its composites have been regarded as the most promising negative electrode materials for producing the next-generation Li-ion batteries(LIBs),due to their ultrahigh theoretical capacity.Howeve...Nano-silicon(nano-Si)and its composites have been regarded as the most promising negative electrode materials for producing the next-generation Li-ion batteries(LIBs),due to their ultrahigh theoretical capacity.However,the commercial applications of nano Si-based negative electrode materials are constrained by the low cycling stability and high costs.The molten salt electrolysis of SiO_(2)is proven to be suitable to produce nano-Si with the advantages of in-situ microstructure control possibilities,cheap affordability and scale-up process capability.Therefore,an economical approach for electrolysis,with a SiO_(2)/graphite porous electrode as cathode,is adopted to produce nano-Si/graphite composite negative electrode materials(SGNM)in this study.The electrolytic product of the optimized porous electrode is taken as the negative electrode materials for LIBs,and it offers a capacity of 733.2 mAh·g^(-1)and an initial coulombic efficiency of 86.8%in a coin-type cell.Moreover,the capacity of the SGNM retained 74.1%of the initial discharging capacity after 50 cycles at 0.2C,which is significantly higher than that of the simple mixture of silicon and graphite obtained from the formation of silicon carbide(SiC)between nano-Si and graphite particles.Notably,this new approach can be applied to a large-scale production.展开更多
Vanadium nitride(VN)-based materials have been investigated as negative electrode materials for supercapacitors(SCs)owing to their high theoretical capacitances and suitable negative potential windows.However,viable V...Vanadium nitride(VN)-based materials have been investigated as negative electrode materials for supercapacitors(SCs)owing to their high theoretical capacitances and suitable negative potential windows.However,viable VNbased negative electrode materials suffer from irreversible electrochemical oxidation of the soluble vanadium species,leading to rapid capacitance fading when operated in aqueous electrolytes.Developing a versatile approach to enhance the stability of VN in aqueous electrolytes is still a challenge.Here,an interface engineering strategy is developed to intentionally introduce surface nanolayers of vanadium oxides(VO_(x))as a reactive template on the VN surface to formulate welldesigned polypyrrole@VNO(Ppy@VNO)core-shell nanowires(NWs)incorporated into a 3D porous N-doped graphene(NG)hybrid aerogel as a durable negative electrode for SCs.Experimental and theoretical investigations reveal that the in-situ constructed Ppy@VNO core-shell host can offer more efficient pathways for rapid electron/ion transport and accessible electroactive sites.Most importantly,a reversible surface redox reaction is realized through the transformation of the valence state of V,and a long cyclic stability is achieved.The Ppy@VNO/NG hybrid aerogel can deliver a high specific capacitance of 650 F g^(-1) at 1 A g^(-1) with approximately 70.7%capacitance retention(up to the twenty-fold current density),and an excellent cycling stability without any capacitance decay after 10,000 cycles at both low and high current densities(1 and 10 A g^(-1),respectively).This work paves the way for the development of advanced electrode materials for SCs.展开更多
基金This work was financially supported by the National Key Research and Development Program of China(No.2016YFB0301305)the Talent Plan Project of Beijing(No.2018000097607G378)the National Natural Science Foundation of China(U166420031).
文摘Nano-silicon(nano-Si)and its composites have been regarded as the most promising negative electrode materials for producing the next-generation Li-ion batteries(LIBs),due to their ultrahigh theoretical capacity.However,the commercial applications of nano Si-based negative electrode materials are constrained by the low cycling stability and high costs.The molten salt electrolysis of SiO_(2)is proven to be suitable to produce nano-Si with the advantages of in-situ microstructure control possibilities,cheap affordability and scale-up process capability.Therefore,an economical approach for electrolysis,with a SiO_(2)/graphite porous electrode as cathode,is adopted to produce nano-Si/graphite composite negative electrode materials(SGNM)in this study.The electrolytic product of the optimized porous electrode is taken as the negative electrode materials for LIBs,and it offers a capacity of 733.2 mAh·g^(-1)and an initial coulombic efficiency of 86.8%in a coin-type cell.Moreover,the capacity of the SGNM retained 74.1%of the initial discharging capacity after 50 cycles at 0.2C,which is significantly higher than that of the simple mixture of silicon and graphite obtained from the formation of silicon carbide(SiC)between nano-Si and graphite particles.Notably,this new approach can be applied to a large-scale production.
基金financially supported by the National Natural Science Foundation of China (52002059 and 51872204)the Belt&Road Young Scientist Exchanges Project of Science and Technology Commission Foundation of Shanghai (20520741000)+3 种基金Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Lowdimension Materials (Donghua University)(18520750400)the Fundamental Research Funds for the Central Universities (20D110631)DHU Distinguished Young Professor Program (LZA2019001)the Open Research Fund of Shanghai Center for High Performance Fibers and Composites and Center for Civil Aviation Composites of Donghua University
文摘Vanadium nitride(VN)-based materials have been investigated as negative electrode materials for supercapacitors(SCs)owing to their high theoretical capacitances and suitable negative potential windows.However,viable VNbased negative electrode materials suffer from irreversible electrochemical oxidation of the soluble vanadium species,leading to rapid capacitance fading when operated in aqueous electrolytes.Developing a versatile approach to enhance the stability of VN in aqueous electrolytes is still a challenge.Here,an interface engineering strategy is developed to intentionally introduce surface nanolayers of vanadium oxides(VO_(x))as a reactive template on the VN surface to formulate welldesigned polypyrrole@VNO(Ppy@VNO)core-shell nanowires(NWs)incorporated into a 3D porous N-doped graphene(NG)hybrid aerogel as a durable negative electrode for SCs.Experimental and theoretical investigations reveal that the in-situ constructed Ppy@VNO core-shell host can offer more efficient pathways for rapid electron/ion transport and accessible electroactive sites.Most importantly,a reversible surface redox reaction is realized through the transformation of the valence state of V,and a long cyclic stability is achieved.The Ppy@VNO/NG hybrid aerogel can deliver a high specific capacitance of 650 F g^(-1) at 1 A g^(-1) with approximately 70.7%capacitance retention(up to the twenty-fold current density),and an excellent cycling stability without any capacitance decay after 10,000 cycles at both low and high current densities(1 and 10 A g^(-1),respectively).This work paves the way for the development of advanced electrode materials for SCs.