期刊文献+
共找到12,950篇文章
< 1 2 250 >
每页显示 20 50 100
Hot processing parameters and microstructure evolution of as-cast Ti-6Cr-5Mo-5V-4Al alloy with millimeter-grade coarse grains
1
作者 Shi-qi GUO Liang HUANG +3 位作者 Chang-min LI Heng-jun LUO Wei XIANG Jian-jun LI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2244-2258,共15页
Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation beh... Hot compression experiments were conducted under conditions of deformation temperatures ranging from 950 to 1150℃,strain rates of 0.001-10 s^(-1),and deformation degrees ranging from 20%to 80%.The hot deformation behavior and microstructure evolution of millimeter-grade coarse grains(MCGs)in the as-cast Ti-6Cr-5Mo-5V-4Al(Ti-6554)alloy were studied,and a hot processing map was established.Under compression along the rolling direction(RD),continuous dynamic recrystallization(CDRX)ensues due to the progressive rotation of subgrains within the MCGs.Along the transverse direction(TD),discontinuous dynamic recrystallization(DDRX)resulting from grain boundary bulging or bridging,occurs on the boundaries of the MCGs.With decreasing strain rate,increasing temperature,and higher deformation degree,dynamic recrystallization becomes more pronounced,resulting in a reduction in the original average grain size.The optimal processing parameters fall within a temperature range of 1050-1150℃,a strain rate of 0.01 s^(-1),and a deformation degree between 40%and 60%. 展开更多
关键词 as-cast Ti-6554 alloy millimeter-grade coarse grains deformation mechanism hot processing parameters
在线阅读 下载PDF
Multi-objective optimization of grinding process parameters for improving gear machining precision 被引量:1
2
作者 YOU Tong-fei HAN Jiang +4 位作者 TIAN Xiao-qing TANG Jian-ping LU Yi-guo LI Guang-hui XIA Lian 《Journal of Central South University》 2025年第2期538-551,共14页
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus... The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods. 展开更多
关键词 worm wheel gear grinding machine gear machining precision machining process parameters multi objective optimization
在线阅读 下载PDF
Influence of Process Parameters on Forming Quality of Single-Channel Multilayer by Joule Heat Fuse Additive Manufacturing
3
作者 Li Suli Fan Longfei +3 位作者 Chen Jichao Gao Zhuang Xiong Jie Yang Laixia 《稀有金属材料与工程》 北大核心 2025年第5期1165-1176,共12页
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l... To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts. 展开更多
关键词 Joule heat additive manufacturing single-channel multilayer process parameter forming quality
原文传递
Revealing the limits of laser energy density: A study of the combined effects of process parameters on melt pool and microstructure in WE43 magnesium alloys
4
作者 Chee Ying Tan Cuie Wen +2 位作者 Edwin Mayes Dechuang Zhang Hua Qian Ang 《Journal of Magnesium and Alloys》 2025年第3期1034-1049,共16页
Additive manufacturing(AM)has revolutionized modern manufacturing,but the application of magnesium(Mg)alloys in laser-based AM remains underexplored due to challenges such as oxidation,low boiling point,and thermal ex... Additive manufacturing(AM)has revolutionized modern manufacturing,but the application of magnesium(Mg)alloys in laser-based AM remains underexplored due to challenges such as oxidation,low boiling point,and thermal expansion,which lead to defects like porosity and cracking.This study provides a comprehensive analysis of microstructure changes in WE43 magnesium(Mg)alloy after laser surface melting(LSM),examining grain morphology,orientation,size,microsegregation,and defects under various combinations of laser power,scan speed,and spot size.Ourfindings reveal that variations in laser power and spot size exert a more significant influence on the depth and aspect ratio of the keyhole melt pool compared to laser scan speed.Critically,we demonstrate that laser energy density,while widely used as a quantitative metric to describe the combined effects of process parameters,exhibits significant limitations.Notable variations in melt pool depth,normalized width,and microstructure with laser energy density were observed,as reflected by low R²values.Additionally,we underscore the importance of assessing the temperature gradient across the width of the melt pool,which determines whether conduction or keyhole melting modes dominate.These modes exhibit distinct heatflow mechanisms and yield fundamentally different microstructural outcomes.Furthermore,we show that the microstructure and grain size in conduction mode exhibit a good correlation with the temperature gradient(G)and solidification rate(R).This research provides a framework for achieving localized microstructural control in LSM,providing insights to optimize process parameters for laser-based 3D printing of Mg alloys,and advancing the integration of Mg alloys into AM technologies. 展开更多
关键词 Laser surface melting(LSM) Magnesium alloys MICROSTRUCTURE Laser processing parameters Spot size
在线阅读 下载PDF
Efect of Process Parameters on the Microstructure and Properties of Ti15Zr5Cu Alloy Fabricated via Selective Laser Melting
5
作者 Yao‑Zong Mao Ya‑Hui Zhang +4 位作者 De‑Chun Ren Diao‑Feng Li Hai‑Bin Ji Hai‑Chang Jiang Chun‑Guang Bai 《Acta Metallurgica Sinica(English Letters)》 2025年第10期1699-1710,共12页
Ti-Zr-Cu alloy has garnered signifcant attention in the feld of dental implants due to its excellent biocompatibility,antibacterial properties,and potentially controllable mechanical properties.However,two critical ch... Ti-Zr-Cu alloy has garnered signifcant attention in the feld of dental implants due to its excellent biocompatibility,antibacterial properties,and potentially controllable mechanical properties.However,two critical challenges remain in the selective laser melting(SLM)fabrication of Ti-Zr-Cu alloy:First,the high thermal conductivity of the Cu element tends to destabilize the solidifcation behavior of the molten pool,leading to uncontrollable pore defect evolution;Second,the infuence of process parameters on the synergistic efects of zirconium solution strengthening and copper precipitation strengthening is not well understood,hindering precise control over the material's mechanical properties.To address these issues,this study systematically elucidates the quantitative impact of energy input on the defect formation mechanisms and strengthening efects in the SLM processing of Ti15Zr5Cu alloy.By optimizing laser power(120–200 W)and scanning speed(450–1200 mm/s)through a full-factor experimental design,we comprehensively analyze the efects of energy input on defect morphology,microstructure evolution,and mechanical performance.The results demonstrate that as energy density decreases,defect types transition from spherical pores to irregular pores,signifcantly infuencing mechanical properties.Based on the defect evolution trends,three distinct energy density regions are identifed:the high-energy region,the lowenergy region,and the transition region.Under the optimal processing conditions of a laser power of 180 W and a scanning speed of 1200 mm/s,the Ti15Zr5Cu alloy exhibits a relative density of 99.998%,a tensile strength of 1490±11 MPa,and an elongation at break of 6.0%±0.5%.These properties ensure that the material satisfes the stringent requirements for high strength in narrow-diameter implants used in the maxilloanterior region.This study provides theoretical and experimental support for the process-property optimization of Ti-Zr-Cu alloys in additive manufacturing and promotes their application in the fabrication of high-performance,antibacterial dental implants. 展开更多
关键词 Selective laser melting Ti15Zr5Cu Defect type process parameters Mechanical property
原文传递
Optimization of process parameters for preparation of vanadium-iron-based alloy via silicon thermal reduction
6
作者 Ning Sun Yi-min Zhang +6 位作者 Nan-nan Xue Kui-song Zhu Jun-han Li Shao-li Yang Lan Ma Xiang-li Cheng Lu Lu 《Journal of Iron and Steel Research International》 2025年第11期3722-3736,共15页
Specialized vanadium(V)-iron(Fe)-based alloy additives utilized in the production of V-containing steels were investigated.Vanadium slag from the Panzhihua region of China was utilized as a raw material to optimize pr... Specialized vanadium(V)-iron(Fe)-based alloy additives utilized in the production of V-containing steels were investigated.Vanadium slag from the Panzhihua region of China was utilized as a raw material to optimize process parameters for the preparation of V-Fe-based alloy via silicon thermal reduction.Experiments were conducted to investigate the effects of reduction temperature,holding time,and slag composition on alloy-slag separation,alloy microstructure,and the oxide content of residual slag,with an emphasis on the recovery of valuable metal elements.The results indicated that the optimal process conditions for silicon thermal reduction were achieved at reduction temperature of 1823 K,holding time of 240 min,and slag composition of 45 wt.%SiO_(2),40 wt.%CaO,and 15 wt.%Al_(2)O_(3).The resulting V-Fe-based alloy predominantly consisted of Fe-based phases such as Fe,titanium(Ti),silicon(Si)and manganese(Mn),with Si,V,as well as chromium(Cr)concentrated in the intercrystalline phase of the Fe-based alloy.The recoveries of Fe,Mn,Cr,V,and Ti under the optimal conditions were 96.30%,91.96%,86.53%,80.29%,and 74.82%,respectively.The key components of the V-Fe-based alloy obtained were 41.96 wt.%Si,27.55 wt.%Fe,12.13 wt.%Mn,5.53 wt.%V,4.86 wt.%Cr,and 3.74 wt.%Ti,thereby enabling the comprehensive recovery of the valuable metal from vanadium slag. 展开更多
关键词 Vanadium slag Silicon thermal reduction process parameter optimization Vanadium–iron-based alloy Valuable metal element
原文传递
Optimization of Extrusion-based Silicone Additive Manufacturing Process Parameters Based on Improved Kernel Extreme Learning Machine
7
作者 Zi-Ning Li Xiao-Qing Tian +3 位作者 Dingyifei Ma Shahid Hussain Lian Xia Jiang Han 《Chinese Journal of Polymer Science》 2025年第5期848-862,共15页
Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors an... Silicone material extrusion(MEX)is widely used for processing liquids and pastes.Owing to the uneven linewidth and elastic extrusion deformation caused by material accumulation,products may exhibit geometric errors and performance defects,leading to a decline in product quality and affecting its service life.This study proposes a process parameter optimization method that considers the mechanical properties of printed specimens and production costs.To improve the quality of silicone printing samples and reduce production costs,three machine learning models,kernel extreme learning machine(KELM),support vector regression(SVR),and random forest(RF),were developed to predict these three factors.Training data were obtained through a complete factorial experiment.A new dataset is obtained using the Euclidean distance method,which assigns the elimination factor.It is trained with Bayesian optimization algorithms for parameter optimization,the new dataset is input into the improved double Gaussian extreme learning machine,and finally obtains the improved KELM model.The results showed improved prediction accuracy over SVR and RF.Furthermore,a multi-objective optimization framework was proposed by combining genetic algorithm technology with the improved KELM model.The effectiveness and reasonableness of the model algorithm were verified by comparing the optimized results with the experimental results. 展开更多
关键词 Silicone material extrusion process parameter optimization Double Gaussian kernel extreme learning machine Euclidean distance assigned to the elimination factor Multi-objective optimization framework
原文传递
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process 被引量:3
8
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy processing parameter Lamellar structure Bimodal-grained structure
在线阅读 下载PDF
Role of processing parameters on relative density,microstructure and mechanical properties of selective laser melted titanium alloy 被引量:1
9
作者 Tian-yu Liu Bo-liang Liu +4 位作者 Jiao-jiao Cheng Shi-bing Liu Kun Shi Hong-yu Liu Jun Zhao 《China Foundry》 SCIE EI CAS CSCD 2024年第6期676-684,共9页
The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6A... The relationships between the selective laser melting(SLM)processing parameters including laser power,scanning speed and hatch space,the relative density,the microstructure,and resulting mechanical properties of Ti-6Al-2Zr-1Mo-1V alloy were investigated in this work.The result shows that laser power acts a dominant role in determining the relative density in comparison with scanning speed and hatch space.The optimal SLM process window for fabricating relative density>99%samples is located in the energy density range of 34.72 J·mm^(-3)to 52.08 J·mm^(-3),where the laser power range is between 125 W and 175 W.An upward trend is found in the micro-hardness as the energy density is increased.The optimum SLM processing parameters of Ti-6Al-2Zr-1Mo-1V alloy are:laser power of 150 W,scanning speed of 1,600 mm·s^(-1),hatch space of 0.08 mm,and layer thickness of 0.03 mm.The highest ultimate tensile strength,yield strength,and ductility under the optimum processing parameter are achieved,which are 1,205 MPa,1,099 MPa,and 8%,respectively.The results of this study can be used to guide SLM production Ti-6Al-2Zr-1Mo-1V alloy parts. 展开更多
关键词 selective laser melting processing parameter Ti-6Al-2Zr-1Mo-1V titanium alloy relative density MICROSTRUCTURE mechanical properties
在线阅读 下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding 被引量:4
10
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
在线阅读 下载PDF
Improvement of titanium alloy TA19 fatigue life by submerged abrasive waterjet peening:Correlation of its process parameters with surface integrity and fatigue performance 被引量:1
11
作者 Gongyu WANG Shulei YAO +6 位作者 Yuxin CHI Chengcheng ZHANG Ning WANG Yalong CHEN Rongsheng LU Zhuang LI Xiancheng ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期377-390,共14页
Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process paramete... Submerged abrasive waterjet peening(SAWJP)is an effective anti-fatigue manufacturing technology that is widely used to strengthen aeroengine components.This study investigated the correlation of SAWJP process parameters on surface integrity and fatigue life of titanium alloy TA19.SAWJP with different water pressures and standoff distances(SoDs)was conducted on the TA19 specimens.The surface integrity of the specimens before and after SAWJP with different process parameters was experimentally studied,including microstructure,surface roughness,microhardness,and compressive residual stress(CRS).Finally,fatigue tests of the specimens before and after SAWJP treatment with different process parameters were carried out at room temperature.The results highlighted that the fatigue life of the TA19 specimen can be increased by 5.46,5.98,and 6.28 times under relatively optimal process parameters,which is mainly due to the improved surface integrity of the specimen after SAWJP treatment.However,the fatigue life of specimens treated with improper process parameters is decreased by 0.55 to 0.69 times owing to the terrible surface roughness caused by the material erosion.This work verifies that SAWJP can effectively improve the surface integrity and fatigue life of workpieces,and reveals the relationship between process parameters,surface integrity,and fatigue life,which provides support for the promotion of SAWJP in the manufacturing fields. 展开更多
关键词 Fatigue testing process parameters Submerged abrasive waterjet peening Surface integrity Surface treatment Titanium alloy TA19
原文传递
Effect of Process Parameters on the Mechanical Properties of Simultaneous Double-Sided Friction Stir Welding Joints 被引量:1
12
作者 Shaofei Meng Huihui Zhao +3 位作者 Jiyi Dong Wu Liu Haitao Liu Juliang Xiao 《Chinese Journal of Mechanical Engineering》 CSCD 2024年第6期162-172,共11页
Currently,conventional single-sided friction stir welding is primarily suitable for joining thin plate aluminum alloys,and its application to thick plates is still challenging in terms of welding efficiency and joint ... Currently,conventional single-sided friction stir welding is primarily suitable for joining thin plate aluminum alloys,and its application to thick plates is still challenging in terms of welding efficiency and joint mechanical properties.Simultaneous double-sided friction stir welding(SDS-FSW)is a high-efficiency joining technique specifically developed for welding thick plates.However,there is little research on the influence of SDS-FSW process parameters on the joint mechanical properties.In this study,a 12 mm thick AA6061-T6 aluminum alloy and dual robot welding equipment are used to conduct SDS-FSW experiments exploring the influence of rotational speedωand welding speed v on the mechanical properties and microstructure.The results show that when the welding parameters areω=800 r/min and v=60–80 mm/min,smooth and defect-free thick plate aluminum alloy SDS-FSW joints can be obtained,and the macroscopic morphology of the joints is distributed in a“dumbbell”shape.The grain size in the weld nugget zone increases with increasing welding heat input.The microhardness distribution in the joint displays a“W”shape,and the hardness value of the weld nugget zone can reach 67%to 86%of that of the base metal(BM).The junction between the thermo-mechanically affected zone and the heat affected zone is the weakest region of the joint,with the lowest hardness being approximately 51%of that of the BM.When the welding parameters areω=800 r/min and v=140 mm/min,the SDS-FSW joint has the highest tensile strength,reaching 78.43%of the BM strength and exhibiting ductile fracture characteristics.This research indicates that acceptable weld strength in thick aluminum alloys can be achieved via the SDS-FSW joining mechanism,highlighting its significant potential for industrial applications. 展开更多
关键词 Simultaneous double-sided friction stir welding Welding process parameters Mechanical properties MICROSTRUCTURE
在线阅读 下载PDF
Research on the Morphology and Mechanical Property of Bonding Interfaces Fabricated by Multimaterial Digital Light Processing
13
作者 Yazhou Li Qiang Yang +5 位作者 Fu Wang Lingyun Jian Qianyuan Wang Jintao Xiao Tao Wu Dichen Li 《Additive Manufacturing Frontiers》 2025年第3期147-157,共11页
Multimaterial digital light processing(DLP)three-dimensional(3D)printing technology provides unique advantages in the field of multi material additive manufacturing(MM AM)with its high resolution and rapid shaping cap... Multimaterial digital light processing(DLP)three-dimensional(3D)printing technology provides unique advantages in the field of multi material additive manufacturing(MM AM)with its high resolution and rapid shaping capabilities based on photopolymerization.However,owing to differences in the curing behavior and physical properties of different materials,multimaterial DLP 3D printing faces challenges such as insufficient interfacial bonding strength and unstable mechanical properties.In this study,two resins were integrated by multimaterial DLP 3D printing technology,and the effects of different layer thicknesses and exposure times on the interfacial bonding strength and morphology of the multimaterials were systematically investigated.The interfacial bonding mechanisms of the two resins was analyzed.It was found that increasing the exposure time can improve the interfacial bonding strength between materials,but certain limitations exist.A mathematical model relating the interfacial bonding strength to the exposure time and layer thickness was developed,and optimal process parameters were determined using optimization algorithms.A variable-parameter printing strategy for the interface was proposed to further improve the performance of printed parts.The maximum tensile strength of the multimaterial samples(44.43 MPa)using this strategy reached that of single-material parts(45 MPa),validating the feasibility of this strategy.This provides guidance for multimaterial DLP 3D printing processes and offers valuable insights for the future additive manufacturing of high-performance multimaterial components. 展开更多
关键词 Multimaterial additive manufacturing Bonding interface MORPHOLOGY Mechanical properties processing parameters
在线阅读 下载PDF
Intensive processing optimization of Zn-Cu fabricated by laser powder-bed fusion
14
作者 YAN Yi-cheng ZHU Jiang-qi +9 位作者 YAN Yuan-ming LIU Yang LIU Ya-jun SHI Chun-bao LIU Yong LIU Min QIU Hao HUANG Qian-li YAN Xing-chen ZHANG Xiang-yu 《Journal of Central South University》 2025年第4期1194-1210,共17页
Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroid... Laser powder-bed fusion(LPBF)of Zn-0.8Cu(wt.%)alloys exhibits significant advantages in the customization of biodegradable bone implants.However,the formability of LPBFed Zn alloy is not sufficient due to the spheroidization during the interaction of powder and laser beam,of which the mechanism is still not well understood.In this study,the evolution of morphology and grain structure of the LPBFed Zn-Cu alloy was investigated based on single-track deposition experiments.As the scanning speed increases,the grain structure of a single track of Zn-Cu alloy gradually refines,but the formability deteriorates,leading to the defect’s formation in the subsequent fabrication.The Zn-Cu alloys fabricated by optimum processing parameters exhibit a tensile strength of 157.13 MPa,yield strength of 106.48 MPa and elongation of 14.7%.This work provides a comprehensive understanding of the processing optimization of Zn-Cu alloy,achieving LPBFed Zn-Cu alloy with high density and excellent mechanical properties. 展开更多
关键词 laser powder-bed fusion Zn alloys single track processing parameters mechanical properties
在线阅读 下载PDF
Optimization of chemistry and process parameters for control of intermetallic formation in Mg sludges
15
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1431-1448,共18页
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)... Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation. 展开更多
关键词 Magnesium sludge Al-Mn intermetallic OPTIMIZATION Taguchi method Sludge factor Chemical composition process parameter
在线阅读 下载PDF
Process Parameters Optimization of Laser Cladding for HT200 with 316L Coating Based on Response Surface Method
16
作者 KONG Huaye ZHU Xijing +2 位作者 LI Zejun ZHANG Jinzhe LI Zuoxiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1569-1579,共11页
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o... In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate. 展开更多
关键词 HT200 laser cladding 316L stainless steel response surface methodology process parameter optimization
原文传递
Influence of processing parameters on the phase composition of ZrN-Si_3N_4 synthesized from zircon 被引量:10
17
作者 MA Beiyue YU Jingkun 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期367-371,共5页
The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average... The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4. 展开更多
关键词 inorganic non-metal materials nitrides carbothermal reduction-nitridation ZIRCON processing parameters phase composition
在线阅读 下载PDF
Effects of Phosphoric Acid on Liquefaction of Wood in Phenol and Optimum Liquefaction Processing Parameters 被引量:17
18
作者 ZhangQiuhui ZhaoGuangjie JieShujun 《Forestry Studies in China》 CAS 2004年第3期50-54,共5页
To clarify the influencing factors of liquefaction of wood in phenol using phosphoric acid as a catalyst and get its liquefaction technology, a study on the liquefaction technology of Chinese fir (Cunninghamia lanceol... To clarify the influencing factors of liquefaction of wood in phenol using phosphoric acid as a catalyst and get its liquefaction technology, a study on the liquefaction technology of Chinese fir (Cunninghamia lanceolata) and poplar (triploid Populus tomentosa Carr) under different conditions was conducted. The results indicate that the residue rate decreases with the increase of liquefaction temperature, liquefaction time, catalyst content or liquid ratio. It is also found that the optimum condition of liquefaction for poplar is estimated as: the reaction temperature of 180 C, the reaction time of 2.5 h, liquid ratio (phenol/wood ratio) of 4.5 and catalyst content of 8%, and 4.2% residue rate could be obtained. Under the processing parameters of temperature 180 C, the reaction time of 2.5 h, liquid ratio (phenol/wood ratio) of 4 and catalyst content of 10%, the residue rate of Chinese fir can reach 5.6%. 展开更多
关键词 wood liquefaction PHENOL residue rate liquefaction processing parameters
在线阅读 下载PDF
Effects of processing parameters on figuration during the GMAW rapid prototyping process 被引量:7
19
作者 尹玉环 胡绳荪 +1 位作者 张晓博 何滨华 《China Welding》 EI CAS 2006年第4期30-33,共4页
As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet t... As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet transition are critical to high quality figuration. The effects of various processing parameters on figuration quality were studied in the experiment of GMA W rapid prototyping using the wire of ERSO-6 , including welding voltage, wire feeding rate, welding speed and so on. The optimal parameters for ERSO-6 are obtained. Simultaneously, it is verified that the rapid prototyping parts with favorable structures and quality can be achieved under the conditions of low heat input and stable droplet transition. 展开更多
关键词 rapid prototyping gas metal arc welding processing parameters figuration
在线阅读 下载PDF
Effect of alloying elements and processing parameters on the Portevin–Le Chatelier effect of Al–Mg alloys 被引量:4
20
作者 Peng-cheng Ma Di Zhang +1 位作者 Lin-zhong Zhuang Ji-shan Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期175-183,共9页
The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testin... The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations. 展开更多
关键词 aluminum-magnesium alloys Portevin-Le Chatelier effect alloying elements processing parameters mechanical properties
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部