In a delayed system excited by low-frequency and high-frequency signals, the necessity of the high-frequency signal on the resonance is discussed. By adjusting the delay time, the resonance occurs in a wide scope of f...In a delayed system excited by low-frequency and high-frequency signals, the necessity of the high-frequency signal on the resonance is discussed. By adjusting the delay time, the resonance occurs in a wide scope of frequencies, including the primary, subharmonic and superharmonic frequencies. Only for very few cases does the high-frequency signal have a positive effect on the resonance. It is the traditional vibrational resonance phenomenon. In most situations, the high-frequency excitation is unnecessary for the resonance. An appropriate delay, rather than the high-frequency signal, is the key factor in improving the weak low-frequency signal.展开更多
基金Supported by the Program of the 12th Five-Year-Plan Key Discipline on Detection Technology and Automatic Equipment of Zhejiang Province of China under Grant No 304the National Basic Research Program of China under Grant No 2014CB049404the National Natural Science Foundation of China under Grant Nos 51205392 and 51305441
文摘In a delayed system excited by low-frequency and high-frequency signals, the necessity of the high-frequency signal on the resonance is discussed. By adjusting the delay time, the resonance occurs in a wide scope of frequencies, including the primary, subharmonic and superharmonic frequencies. Only for very few cases does the high-frequency signal have a positive effect on the resonance. It is the traditional vibrational resonance phenomenon. In most situations, the high-frequency excitation is unnecessary for the resonance. An appropriate delay, rather than the high-frequency signal, is the key factor in improving the weak low-frequency signal.