期刊文献+
共找到1,130篇文章
< 1 2 57 >
每页显示 20 50 100
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:2
1
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
在线阅读 下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:13
2
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification algorithms NON-PARAMETRIC K-nearest-neighbor Neural Networks Random Forest Support Vector Machines
在线阅读 下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
3
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
在线阅读 下载PDF
基于改进WKNN的CSI被动室内指纹定位方法
4
作者 邵小强 马博 +3 位作者 韩泽辉 杨永德 原泽文 李鑫 《吉林大学学报(工学版)》 北大核心 2025年第7期2444-2454,共11页
针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的... 针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的幅相信息共同作为指纹数据,构造与参考点位置信息相关的稳定指纹数据库。在线阶段,提出改进的加权K近邻算法,对估计坐标进行重复匹配,该算法在一次匹配中得到位置坐标后,求该位置坐标在K个近邻点间的欧氏距离,并使用高斯变换对K个距离值进行权重计算,完成人员的定位。分别在教室和大厅进行实验模拟测试,实验结果表明:采用本文算法约81%的测试位置误差控制在1 m以内,可以有效提高定位精度。 展开更多
关键词 室内定位 信道状态信息 被动定位 改进阈值的小波域去噪 改进的加权K近邻算法 高斯变换
原文传递
KNN-Transformer:基于K近邻分类的Transformer算法在滚动轴承故障诊断中的应用
5
作者 王军锋 张彪 +5 位作者 张昊 田开庆 田新民 王泰旭 罗凌燕 赵悦 《机电工程技术》 2025年第18期160-166,共7页
针对滚动轴承故障诊断中样本呈现全局冗余、局部稀疏的小样本问题,提出KNN-Transformer算法,融合Transformer自注意力机制与K近邻(KNN)算法。该算法通过Transformer编码器提取振动信号的层次化特征,利用KNN分类器替代传统Softmax层,解... 针对滚动轴承故障诊断中样本呈现全局冗余、局部稀疏的小样本问题,提出KNN-Transformer算法,融合Transformer自注意力机制与K近邻(KNN)算法。该算法通过Transformer编码器提取振动信号的层次化特征,利用KNN分类器替代传统Softmax层,解决小样本数据集场景下Softmax线性分类器易过拟合的问题。实验基于滚动轴承四自由度动力学仿真数据及西储大学(CWRU)轴承故障数据集展开。在仿真数据中,模型训练集与测试集准确率分别达100%和97%,AUC值为0.98,表明其对复杂振动信号的特征解析能力;在西储大学数据集中,测试集准确率达100%,AUC值为1,获得了较好的故障识别效果。通过对比实验显示,KNN-Transformer在精准率、召回率等指标上均优于单一KNN或Transformer模型,验证了其在机械故障诊断中的有效性与鲁棒性,为智能诊断提供了新方法。 展开更多
关键词 滚动轴承故障诊断 knn-Transformer 自注意力机制 K近邻算法 小样本数据
在线阅读 下载PDF
基于GGO-KD-KNN算法的下肢步态识别研究
6
作者 李传江 丁新豪 +2 位作者 涂嘉俊 李昂 尹仕熠 《上海师范大学学报(自然科学版中英文)》 2025年第2期141-145,共5页
为了提高下肢步态识别的准确性和效率,针对K最近邻(KNN)算法参数调节困难的问题,提出了一种基于灰雁优化-K维树-K最近邻(GGO-KD-KNN)算法的下肢步态识别方法.首先,利用表面肌电信号(sEMG)采集下肢肌肉活动信息,并将信号划分为5个步态阶... 为了提高下肢步态识别的准确性和效率,针对K最近邻(KNN)算法参数调节困难的问题,提出了一种基于灰雁优化-K维树-K最近邻(GGO-KD-KNN)算法的下肢步态识别方法.首先,利用表面肌电信号(sEMG)采集下肢肌肉活动信息,并将信号划分为5个步态阶段.然后,进行sEMG去噪,并提取时域和频域特征.接着,用GGO算法基于灰雁群体行为进行启发式优化,优化KNN算法的K值和距离度量,并通过适应度迭代寻找最优解.实验结果表明,通过GGO算法优化的步态识别精度达到了98.23%,标准差为0.264,相较于其他常用算法,基于GGO-KD-KNN算法的步态识别方法展现出更高的分类准确率和稳定性,为下肢智能辅助装置的研究和开发提供了有力的理论支持. 展开更多
关键词 下肢步态识别 表面肌电信号(sEMG) 灰雁优化-K维树-K最近邻(GGO-KD-knn)算法 分类优化
在线阅读 下载PDF
基于KNN-LASSO-PPC法的改进BitCN-LSTM短期光伏功率预测
7
作者 贺宇轩 王锟 +2 位作者 曾进辉 刘颉 周武定 《电子测量技术》 北大核心 2025年第15期42-51,共10页
针对光伏出力受天气条件随机性和波动性影响的特点,提出一种基于KNN-LASSO-PCC法的改进BitCN-LSTM神经网络短期光伏功率预测方法。首先,采用KNN对数据集进行清洗,再结合LASSO与PCC进行多层特征筛选;然后,在传统BitCN-LSTM方法基础上加入... 针对光伏出力受天气条件随机性和波动性影响的特点,提出一种基于KNN-LASSO-PCC法的改进BitCN-LSTM神经网络短期光伏功率预测方法。首先,采用KNN对数据集进行清洗,再结合LASSO与PCC进行多层特征筛选;然后,在传统BitCN-LSTM方法基础上加入GRU与Elman神经网络,其中,GRU解决长时间依赖问题和参数优化问题,Elman网络增强局部时序建模和记忆能力;最后,在多层特征筛选下选取直角辐射、散角辐射、气温和湿度作为输入变量,选取光伏电站各时段发电功率的预测值作为最终输出,进行为期1~3天间隔15 min进行一次预测的仿真,所得的最优评估指标平均绝对误差、均方误差以及平均绝对百分比误差分别为9.9763%、1.7029%和10.6267%,训练时间和最优测试时间分别为181.3051 s和0.058932 s,相较于其他常见的短期光伏预测模型精度更高,速度更快。 展开更多
关键词 光伏功率预测 多层特征筛选 K近邻算法 埃尔曼网络 门控循环单元
原文传递
基于KNN的水电站水轮机监控系统研究 被引量:2
8
作者 谢科军 宋善坤 +2 位作者 胡婷 姚娟 张利益 《粘接》 2025年第1期193-196,共4页
针对大型水轮机轴承故障诊断和预警准确率低,导致抽水蓄能电站存在状态监测与运维管理效果不佳的问题,提出一种大型水轮机轴承润滑油液在线监测系统。利用电涡流传感器对轴承油液数据采集,采用改进的K最近邻算法对轴承故障进行准确分类... 针对大型水轮机轴承故障诊断和预警准确率低,导致抽水蓄能电站存在状态监测与运维管理效果不佳的问题,提出一种大型水轮机轴承润滑油液在线监测系统。利用电涡流传感器对轴承油液数据采集,采用改进的K最近邻算法对轴承故障进行准确分类与诊断。结果表明,通过改进KNN算法,得到新故障与集合A中故障识别球的相似度最大值为0.4787,低于相似度匹配阀值0.6,说明改进KNN算法可实现新故障类型的准确识别,具备一定的自适应性和可扩展性;实际应用也进一步证明该算法可满足对水轮机轴承的状态监测、故障诊断和预警需求,实现水电站的准确监测和智能化运维管理。 展开更多
关键词 抽水蓄能电站 水轮机组 在线油液监测 K近邻算法 故障诊断
在线阅读 下载PDF
机载激光雷达数据与机器学习算法的森林蓄积量估测模型构建精度评价——基于KNN、XGBoost与RF模型反演算法 被引量:1
9
作者 潘自辉 肖正利 +5 位作者 黄光体 赵文纯 张流洋 刘晓阳 肖箫 林浩然 《湖北林业科技》 2025年第2期34-44,50,共12页
基于激光雷达系统获取数据,旨在探索建立一个适用于湖北省的混合树种蓄积量估测模型。研究区涵盖9个市州及15个县市区386个样地(小班),涉及3种森林类型(阔叶林、针叶林和针阔混交林),划分为5个植被区,分别为大别山桐柏山丘陵低山、鄂西... 基于激光雷达系统获取数据,旨在探索建立一个适用于湖北省的混合树种蓄积量估测模型。研究区涵盖9个市州及15个县市区386个样地(小班),涉及3种森林类型(阔叶林、针叶林和针阔混交林),划分为5个植被区,分别为大别山桐柏山丘陵低山、鄂西北山地丘陵、鄂东南低山丘陵、江汉平原湖泊和鄂西南山地;从点云数据中提取森林参数特征变量,结合实地调查数据,分别采用机器算法KNN、XGBoost和RF模型对森林蓄积量进行估测,采用决定系数评价模型估测精度,对估测结果进行比较分析。结果表明:(1)RF模型的估测值与实际值较为接近,精度高于KNN和XGBoost模型;(2)不同地貌区域的森林类型估测精度存在差异,表现为针叶林估测精度高于阔叶林;估测精度与林分郁闭度、林龄、起源等因子存在相关性,林分郁闭度较高时,估测精度较高;中龄、近熟林及过熟林估测精度较高,人工林的精度高于天然林;(3)蓄积量估测值精度与实测值的区间相关,实测值趋于一定低值与高值区间时,估测精度降低。通过激光雷达数据的反演结果与地面调查数据验证,反映了模型的准确度,促进林业调查与激光雷达融合运用,需进一步比较多种模型,并探索森林分布、林木结构特征、林分因子等之间影响估测精度的相关因素。 展开更多
关键词 激光雷达 森林蓄积量 模型反演 K-近邻算法 极端梯度提升 随机森林
在线阅读 下载PDF
基于特征提取的KNN路由优化算法
10
作者 赵莉 石昕宇 孙宗伟 《光通信技术》 北大核心 2025年第5期89-93,共5页
为提高大规模Benes光网络的路由效率与通信性能,提出一种基于特征提取的K近邻(KNN)路由优化算法。通过提取波导交叉位置及数量等关键特征构建特征路由表,对传统KNN路由优化算法进行预处理优化,并基于四电平脉冲幅度调制(PAM4)系统搭建... 为提高大规模Benes光网络的路由效率与通信性能,提出一种基于特征提取的K近邻(KNN)路由优化算法。通过提取波导交叉位置及数量等关键特征构建特征路由表,对传统KNN路由优化算法进行预处理优化,并基于四电平脉冲幅度调制(PAM4)系统搭建光网络仿真平台,对不同路由路径的消光比、带宽及误符号率进行测试分析。实验结果表明:所提方法将路由筛选准确率从34.48%提升至71.85%;在30 Gb/s传输速率下,改进的KNN路由优化算法使优势路径的最小接收功率要求比劣势路径低0.8 dBm。 展开更多
关键词 Benes光网络 K近邻算法 消光比 带宽 误符号率
在线阅读 下载PDF
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
11
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison Distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-nearest neighbor and Mean imputation
在线阅读 下载PDF
基于改进WT与KNN的建筑电气系统故障分析
12
作者 赵闯 《建筑技术开发》 2025年第5期144-146,共3页
以往城市轨道交通使用的电气系统中故障诊断信号依赖傅里叶变换处理,无法有效提取故障信号中的细节信息,在徐州地铁6号线项目调试任务提出基于K邻近算法改进小波变换的模型。该模型在小波变换强大的特征提取能力与时频局部等特性的基础... 以往城市轨道交通使用的电气系统中故障诊断信号依赖傅里叶变换处理,无法有效提取故障信号中的细节信息,在徐州地铁6号线项目调试任务提出基于K邻近算法改进小波变换的模型。该模型在小波变换强大的特征提取能力与时频局部等特性的基础上,加入K邻近算法,进一步在多尺度上提取关键特征并将其分类,从而达到提高故障诊断准确率的效果。经过对比分析,融合了小波变换与K–近邻算法的模型展现出良好的性能,模型准确率达97.82%,且平均诊断耗时仅为3.2s。在实际应用中,模型使用前后荷载比提升,成本降低。试验结果表明,研究模型能较好地运用于城市轨道交通工程动力照明系统和BAS系统的故障诊断与分析中。 展开更多
关键词 K邻近算法 小波变换 地铁施工 傅里叶变换
在线阅读 下载PDF
基于改进KNN的电力计量异常的检测方法
13
作者 王慧 张智晶 +2 位作者 罗雪霏 王琦 魏然 《电气自动化》 2025年第4期18-20,24,共4页
针对电力计量自动化系统异常分析问题,提出了一种基于改进K最近邻算法(K-nearest neighbor, KNN)的计量异常的检测方法。通过概述电力计量自动化系统的结构以及常见电力计量异常检测模型,给出异常用电评估指标及常见检测方法,并重点探... 针对电力计量自动化系统异常分析问题,提出了一种基于改进K最近邻算法(K-nearest neighbor, KNN)的计量异常的检测方法。通过概述电力计量自动化系统的结构以及常见电力计量异常检测模型,给出异常用电评估指标及常见检测方法,并重点探究改进KNN的计量自动化终端检测应用,验证了其在电力计量自动化系统中的有效性。算例分析表明,基于改进KNN的异常检测方法可以很好地定位异常。 展开更多
关键词 自动化系统 异常检测 电力计量 改进K最近邻算法
在线阅读 下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
14
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k NN)查询算法 不规则区域划分方法 MAP REDUCE 大数据
在线阅读 下载PDF
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:9
15
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(knn) local INTENSIFICATION memetic algorithm
在线阅读 下载PDF
基于时空加权KNN算法的1988-2015年渤海海冰空间分布重建 被引量:3
16
作者 孙静琪 李晨睿 +2 位作者 许映军 颜钰 邓磊 《海洋环境科学》 CAS CSCD 北大核心 2024年第3期438-447,共10页
利用AVHRR和MODIS遥感解译数据,结合与渤海海冰面积相关程度高的日平均温度、3 d-1.8℃积温、累积冻冰度日和累积融冰度日等气象因子数据,基于时空加权KNN算法构建了空间分辨率为1 km海冰空间补全模型,重建了1988-2015年渤海海冰空间分... 利用AVHRR和MODIS遥感解译数据,结合与渤海海冰面积相关程度高的日平均温度、3 d-1.8℃积温、累积冻冰度日和累积融冰度日等气象因子数据,基于时空加权KNN算法构建了空间分辨率为1 km海冰空间补全模型,重建了1988-2015年渤海海冰空间分布连续日数据集。渤海海冰空间分布补全均方误差为0.03,分类正确率均为87%以上,28年平均正确率为91.87%,均方误差与海冰遥感影像数据缺失率呈中度正相关。结果表明,该模型均方误差较小,且分类正确率高,可以用于渤海海冰空间分布数据补全,空间分辨率高且补全速度快,在海洋环境安全管理领域,尤其对有冰海域海冰灾害风险管理方面有重要的价值。 展开更多
关键词 渤海海冰 加权knn算法 海冰空间分布 海冰数据重建
原文传递
AN EFFICIENT FAST ENCODING ALGORITHM FOR VECTOR QUANTIZATION 被引量:1
17
作者 徐润生 陆哲明 +1 位作者 许晓鸣 张卫东 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第2期23-27,32,共6页
A fast encoding algorithm was presented which made full use of two characteristics of a vector, its sum and variance. In this paper, a vector was separated into two subvectors, one is the first half of the coordinates... A fast encoding algorithm was presented which made full use of two characteristics of a vector, its sum and variance. In this paper, a vector was separated into two subvectors, one is the first half of the coordinates and the other contains the remaining coordinates. Three inequalities based on the characteristics of the sums and variances of a vector and its two subvectors were introduced to reject those codewords which are impossible to be the nearest codeword. The simulation results show that the proposed algorithm is faster than the improved equal average eaual variance nearest neighbor search (EENNS) algorithm. 展开更多
关键词 VECTOR QUANTIZATION nearest neighbor SEARCH equal AVERAGE nearest neighbor SEARCH algorithm equal AVERAGE equal variance nearest neighbor SEARCH algorithm Document code:A
在线阅读 下载PDF
Novel Apriori-Based Multi-Label Learning Algorithm by Exploiting Coupled Label Relationship 被引量:1
18
作者 Zhenwu Wang Longbing Cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期206-214,共9页
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati... It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria. 展开更多
关键词 multi-label classification hypothesis testing k nearest neighbor apriori algorithm label coupling
在线阅读 下载PDF
基于IKNN和LOF的变压器回复电压数据清洗方法研究 被引量:4
19
作者 陈啸轩 邹阳 +3 位作者 翁祖辰 林锦茄 林昕亮 张云霄 《电子测量与仪器学报》 CSCD 北大核心 2024年第2期92-100,共9页
基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近... 基于回复电压极化谱提取特征参量是目前广泛应用的变压器油纸绝缘状态评估方法,但极化谱易受工况干扰、人工失误等因素影响而出现特征数据异常的情况,严重降低评估准确性。针对上述问题,该文提出了一种基于局部离群因子(LOF)和改进K最近邻(IKNN)的回复电压数据清洗方法。首先,选取回复电压极化谱的回复电压极大值Urmax、初始斜率Sr与主时间常数tcdom作为老化特征参量,并基于LOF算法对非标准极化谱中的异常特征量数据进行识别与筛除。其次,利用模糊C均值(FCM)聚类算法减小噪声点对KNN算法的干扰,并通过加权欧氏距离标度突出各特征量间的关联性,进而构建出基于IKNN的数据填补模型架构以实现特征缺失数据的填补。最后,代入多组实测数据验证所提数据清洗方法的实效性。结果表明,数据清洗后的状态评估准确率相较于原有数据上升了50%左右,有效提高了变压器回复电压数据质量,为准确感知变压器运行状况奠定坚实的基础。 展开更多
关键词 油纸绝缘 特征数据清洗 局部离群因子算法 回复电压极化谱 改进K最近邻算法
原文传递
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
20
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM algorithm GAUSSIAN MIXTURE Model K-nearest neighbor K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部