期刊文献+
共找到1,106篇文章
< 1 2 56 >
每页显示 20 50 100
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:2
1
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
在线阅读 下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:14
2
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification algorithms NON-PARAMETRIC K-nearest-neighbor Neural Networks Random Forest Support Vector Machines
在线阅读 下载PDF
Nearest neighbor search algorithm for GBD tree spatial data structure
3
作者 Yutaka Ohsawa Takanobu Kurihara Ayaka Ohki 《重庆邮电大学学报(自然科学版)》 2007年第3期253-259,共7页
This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteris... This paper describes the nearest neighbor (NN) search algorithm on the GBD(generalized BD) tree. The GBD tree is a spatial data structure suitable for two-or three-dimensional data and has good performance characteristics with respect to the dynamic data environment. On GIS and CAD systems, the R-tree and its successors have been used. In addition, the NN search algorithm is also proposed in an attempt to obtain good performance from the R-tree. On the other hand, the GBD tree is superior to the R-tree with respect to exact match retrieval, because the GBD tree has auxiliary data that uniquely determines the position of the object in the structure. The proposed NN search algorithm depends on the property of the GBD tree described above. The NN search algorithm on the GBD tree was studied and the performance thereof was evaluated through experiments. 展开更多
关键词 邻居搜索算法 GBD树 空间数据结构 动态数据环境 地理信息系统 计算机辅助设计
在线阅读 下载PDF
基于不规则区域划分方法的k-Nearest Neighbor查询算法 被引量:1
4
作者 张清清 李长云 +3 位作者 李旭 周玲芳 胡淑新 邹豪杰 《计算机系统应用》 2015年第9期186-190,共5页
随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细... 随着越来越多的数据累积,对数据处理能力和分析能力的要求也越来越高.传统k-Nearest Neighbor(k NN)查询算法由于其容易导致计算负载整体不均衡的规则区域划分方法及其单个进程或单台计算机运行环境的较低数据处理能力.本文提出并详细介绍了一种基于不规则区域划分方法的改进型k NN查询算法,并利用对大规模数据集进行分布式并行计算的模型Map Reduce对该算法加以实现.实验结果与分析表明,Map Reduce框架下基于不规则区域划分方法的k NN查询算法可以获得较高的数据处理效率,并可以较好的支持大数据环境下数据的高效查询. 展开更多
关键词 k-nearest neighbor(k NN)查询算法 不规则区域划分方法 MAP REDUCE 大数据
在线阅读 下载PDF
Comparison of Two Quantum Nearest Neighbor Classifiers on IBM’s Quantum Simulator
5
作者 Wei Hu 《Natural Science》 2018年第3期87-98,共12页
Today computers are used to store data in memory and then process them. In our big data era, we are facing the challenge of storing and processing the data simply due to their fast ever growing size. Quantum computati... Today computers are used to store data in memory and then process them. In our big data era, we are facing the challenge of storing and processing the data simply due to their fast ever growing size. Quantum computation offers solutions to these two prominent issues quantum mechanically and beautifully. Through careful design to employ superposition, entanglement, and interference of quantum states, a quantum algorithm can allow a quantum computer to store datasets of exponentially large size as linear size and then process them in parallel. Quantum computing has found its way in the world of machine learning where new ideas and approaches are in great need as the classical computers have reached their capacity and the demand for processing big data grows much faster than the computing power the classical computers can provide today. Nearest neighbor algorithms are simple, robust, and versatile supervised machine learning algorithms, which store all training data points as their learned “model” and make the prediction of a new test data point by computing the distances between the query point and all the training data points. Quantum counterparts of these classical algorithms provide efficient and elegant ways to deal with the two major issues of storing data in memory and computing the distances. The purpose of our study is to select two similar quantum nearest neighbor algorithms and use a simple dataset to give insight into how they work, highlight their quantum nature, and compare their performances on IBM’s quantum simulator. 展开更多
关键词 QUANTUM COMPUTATION QUANTUM MACHINE Learning QUANTUM nearest neighbor algorithm
暂未订购
AN EFFICIENT FAST ENCODING ALGORITHM FOR VECTOR QUANTIZATION 被引量:1
6
作者 徐润生 陆哲明 +1 位作者 许晓鸣 张卫东 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第2期23-27,32,共6页
A fast encoding algorithm was presented which made full use of two characteristics of a vector, its sum and variance. In this paper, a vector was separated into two subvectors, one is the first half of the coordinates... A fast encoding algorithm was presented which made full use of two characteristics of a vector, its sum and variance. In this paper, a vector was separated into two subvectors, one is the first half of the coordinates and the other contains the remaining coordinates. Three inequalities based on the characteristics of the sums and variances of a vector and its two subvectors were introduced to reject those codewords which are impossible to be the nearest codeword. The simulation results show that the proposed algorithm is faster than the improved equal average eaual variance nearest neighbor search (EENNS) algorithm. 展开更多
关键词 VECTOR QUANTIZATION nearest neighbor SEARCH equal AVERAGE nearest neighbor SEARCH algorithm equal AVERAGE equal variance nearest neighbor SEARCH algorithm Document code:A
在线阅读 下载PDF
Research on Initialization on EM Algorithm Based on Gaussian Mixture Model 被引量:4
7
作者 Ye Li Yiyan Chen 《Journal of Applied Mathematics and Physics》 2018年第1期11-17,共7页
The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effectiv... The EM algorithm is a very popular maximum likelihood estimation method, the iterative algorithm for solving the maximum likelihood estimator when the observation data is the incomplete data, but also is very effective algorithm to estimate the finite mixture model parameters. However, EM algorithm can not guarantee to find the global optimal solution, and often easy to fall into local optimal solution, so it is sensitive to the determination of initial value to iteration. Traditional EM algorithm select the initial value at random, we propose an improved method of selection of initial value. First, we use the k-nearest-neighbor method to delete outliers. Second, use the k-means to initialize the EM algorithm. Compare this method with the original random initial value method, numerical experiments show that the parameter estimation effect of the initialization of the EM algorithm is significantly better than the effect of the original EM algorithm. 展开更多
关键词 EM algorithm GAUSSIAN MIXTURE Model K-nearest neighbor K-MEANS algorithm INITIALIZATION
在线阅读 下载PDF
Novel Apriori-Based Multi-Label Learning Algorithm by Exploiting Coupled Label Relationship 被引量:1
8
作者 Zhenwu Wang Longbing Cao 《Journal of Beijing Institute of Technology》 EI CAS 2017年第2期206-214,共9页
It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical informati... It is a key challenge to exploit the label coupling relationship in multi-label classification(MLC)problems.Most previous work focused on label pairwise relations,in which generally only global statistical information is used to analyze the coupled label relationship.In this work,firstly Bayesian and hypothesis testing methods are applied to predict the label set size of testing samples within their k nearest neighbor samples,which combines global and local statistical information,and then apriori algorithm is used to mine the label coupling relationship among multiple labels rather than pairwise labels,which can exploit the label coupling relations more accurately and comprehensively.The experimental results on text,biology and audio datasets shown that,compared with the state-of-the-art algorithm,the proposed algorithm can obtain better performance on 5 common criteria. 展开更多
关键词 multi-label classification hypothesis testing k nearest neighbor apriori algorithm label coupling
在线阅读 下载PDF
A Memetic Algorithm With Competition for the Capacitated Green Vehicle Routing Problem 被引量:9
9
作者 Ling Wang Jiawen Lu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第2期516-526,共11页
In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used t... In this paper, a memetic algorithm with competition(MAC) is proposed to solve the capacitated green vehicle routing problem(CGVRP). Firstly, the permutation array called traveling salesman problem(TSP) route is used to encode the solution, and an effective decoding method to construct the CGVRP route is presented accordingly. Secondly, the k-nearest neighbor(k NN) based initialization is presented to take use of the location information of the customers. Thirdly, according to the characteristics of the CGVRP, the search operators in the variable neighborhood search(VNS) framework and the simulated annealing(SA) strategy are executed on the TSP route for all solutions. Moreover, the customer adjustment operator and the alternative fuel station(AFS) adjustment operator on the CGVRP route are executed for the elite solutions after competition. In addition, the crossover operator is employed to share information among different solutions. The effect of parameter setting is investigated using the Taguchi method of design-ofexperiment to suggest suitable values. Via numerical tests, it demonstrates the effectiveness of both the competitive search and the decoding method. Moreover, extensive comparative results show that the proposed algorithm is more effective and efficient than the existing methods in solving the CGVRP. 展开更多
关键词 Capacitated green VEHICLE ROUTING problem(CGVRP) COMPETITION k-nearest neighbor(kNN) local INTENSIFICATION memetic algorithm
在线阅读 下载PDF
基于K近邻算法的高粘结性能混凝土抗压强度预测 被引量:1
10
作者 伍晓圆 刘艳 《粘接》 2025年第3期24-27,共4页
针对掺合料种类繁多,无法适应粘结界面的粗糙度,降低了抗压强度的预测精度问题,从不同硅灰掺量、钢纤维掺量、粉煤灰掺量角度,制备不同配合比条件的高粘结性能混凝土试件,将不同配合比掺量数据作为K近邻算法的输入,以适应粘结界面的粗糙... 针对掺合料种类繁多,无法适应粘结界面的粗糙度,降低了抗压强度的预测精度问题,从不同硅灰掺量、钢纤维掺量、粉煤灰掺量角度,制备不同配合比条件的高粘结性能混凝土试件,将不同配合比掺量数据作为K近邻算法的输入,以适应粘结界面的粗糙度,计算新配比样本与参考配比样本配比特征的欧几里得距离,将距离最小的参考配比样本中混凝土抗压强度作为新配比样本中混凝土抗压强度预测值,提高抗压强度的预测精度。试验结果表明,硅灰掺量、钢纤维掺量、粉煤灰掺量分别是25%、4%、10%时,高粘结性能混凝土抗压强度较优。 展开更多
关键词 K近邻算法 高粘结性能 抗压强度 超高性能混凝土 配合比
在线阅读 下载PDF
基于改进双目ORB-SLAM3的特征匹配算法 被引量:1
11
作者 伞红军 冯金祥 +2 位作者 陈久朋 彭真 赵龙云 《农业机械学报》 北大核心 2025年第5期625-634,共10页
针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-S... 针对传统ORB算法在双目特征匹配阶段误匹配率高而导致无法满足高精度定位要求的问题,提出了一种基于改进双目ORB-SLAM3的特征匹配算法。在特征点匹配阶段引入最近邻匹配算法(FLANN),通过设定比率阈值筛选出更为精确的匹配对,在双目ORB-SLAM3立体匹配中引入自适应加权SAD-Census算法,通过考虑像素之间的几何距离,重新计算SAD值并与Census算法相融合来提高特征匹配稳定性和精度,同时加入自适应的SAD窗口滑动范围进一步扩大搜索距离,进而筛选出正确的匹配来提高系统精度。在EuRoC数据集和真实室内场景中进行实验,结果表明与改进前ORB-SLAM3算法相比,在数据集下改进算法定位精度提高23.32%,真实环境中提高近50%,从而验证了改进算法可行性和有效性。 展开更多
关键词 改进双目ORB-SLAM3 特征匹配 最近邻匹配算法 自适应加权SAD-Census算法
在线阅读 下载PDF
一种融合贝叶斯优化的K最近邻分类算法 被引量:3
12
作者 高海宾 《绵阳师范学院学报》 2025年第5期79-87,共9页
K最近邻分类算法因其简单直观,在分类和回归任务中得到广泛应用,但其性能高度依赖于超参数配置.为了解决这一问题,提出了一种融合贝叶斯优化的K最近邻分类算法,旨在能自动化地调整KNN算法的超参数,以提高分类精度和泛化能力.首先概述了... K最近邻分类算法因其简单直观,在分类和回归任务中得到广泛应用,但其性能高度依赖于超参数配置.为了解决这一问题,提出了一种融合贝叶斯优化的K最近邻分类算法,旨在能自动化地调整KNN算法的超参数,以提高分类精度和泛化能力.首先概述了KNN算法的基本原理,并分析了超参数对算法性能的影响.随后,探讨了贝叶斯优化的基础理论及其在超参数优化中的应用.实验过程中,通过对Wine数据集的分类验证了算法的有效性和可靠性,再通过一系列实验,对比了贝叶斯优化、网格搜索和随机搜索等方法在不同规模数据集上的性能,结果显示,贝叶斯优化在大规模数据集上展现出显著的时间效率优势,能够快速收敛至最优或近似最优的超参数配置.最后讨论了该算法的局限性,并提出了未来可能的研究方向. 展开更多
关键词 K最近邻算法 贝叶斯优化 超参数 分类性能
在线阅读 下载PDF
基于改进WKNN的CSI被动室内指纹定位方法
13
作者 邵小强 马博 +3 位作者 韩泽辉 杨永德 原泽文 李鑫 《吉林大学学报(工学版)》 北大核心 2025年第7期2444-2454,共11页
针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的... 针对幅值和相位构造包含干扰过多导致定位精度低的问题,提出了一种基于改进加权K最近邻算法的信道状态信息被动室内定位方法。离线阶段,采用隔离森林法,改进阈值的小波域去噪和线性变换法对采集到的信道状态信息进行预处理,将处理后的幅相信息共同作为指纹数据,构造与参考点位置信息相关的稳定指纹数据库。在线阶段,提出改进的加权K近邻算法,对估计坐标进行重复匹配,该算法在一次匹配中得到位置坐标后,求该位置坐标在K个近邻点间的欧氏距离,并使用高斯变换对K个距离值进行权重计算,完成人员的定位。分别在教室和大厅进行实验模拟测试,实验结果表明:采用本文算法约81%的测试位置误差控制在1 m以内,可以有效提高定位精度。 展开更多
关键词 室内定位 信道状态信息 被动定位 改进阈值的小波域去噪 改进的加权K近邻算法 高斯变换
原文传递
基于K互近邻与核密度估计的DPC算法 被引量:2
14
作者 周玉 夏浩 +1 位作者 刘虹瑜 白磊 《北京航空航天大学学报》 北大核心 2025年第6期1978-1990,共13页
快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)... 快速搜索和发现密度峰值聚类(DPC)算法是一种基于密度的聚类算法。该算法不需要迭代和过多的设定参数,但由于计算局部密度时没有考虑数据的局部结构,导致无法识别簇密度小的聚类中心。针对此问题,提出基于K互近邻(KN)和核密度估计(KDE)的DPC(KKDPC)算法。通过K近邻和核密度估计方法得到数据点的K互近邻数量和局部核密度;将K互近邻数量与局部核密度进行加和获得新的局部密度;根据数据点的局部密度得到相对距离,并通过构建决策图选取聚类中心及分配非中心点。利用人工数据集和真实数据集进行实验,并与DPC、基于密度的噪声空间聚类应用(DBSCAN)、K-means、模糊C均值聚类算法(FCM)、基于K近邻的DPC(DPCKNN)、近邻优化DPC(DPC-NNO)、基于模糊加权共享邻居的DPC(DPC-FWSN)算法进行对比。通过计算调整互信息(AMI)、调整兰德指数(ARI)、归一化互信息(NMI)来验证KKDPC算法的性能。实验结果表明:KKDPC算法能更加准确地识别聚类中心,有效地提高聚类精度。 展开更多
关键词 聚类算法 密度峰值 K近邻 K互近邻 核密度估计
原文传递
基于快速特征逼近谱图注意力网络的滚动轴承半监督智能故障诊断研究
15
作者 宁少慧 杜越 周利东 《机床与液压》 北大核心 2025年第6期33-39,共7页
基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据... 基于图注意力网络的诊断模型在故障诊断全监督任务中有较好的表现,但在半监督任务中表现欠佳。针对此问题,构建一种基于快速特征逼近谱图注意力网络的半监督滚动轴承智能故障诊断模型。通过K近邻图方法将振动信号转为可用于诊断的图数据,丰富了数据特征;将图数据输入到构建的诊断模型中,学习故障信息特征,并分析不同的标签比例训练集的诊断结果。同时,分析了Sum、Mean、Max 3种池化方式和超参数对诊断模型的影响;最后,分别在两组实验轴承数据集上进行验证。结果表明:所提模型可以有效地捕获图的全局模式,降低计算复杂度,在全监督诊断任务中其诊断准确率可以保持在99%以上;在标签比例为10%的半监督任务中,其诊断准确率仍能保持在93.5%,所提诊断模型在半监督任务中有良好表现。 展开更多
关键词 轴承 故障诊断 快速特征逼近谱图注意力网络 K近邻图算法
在线阅读 下载PDF
KNN-Transformer:基于K近邻分类的Transformer算法在滚动轴承故障诊断中的应用
16
作者 王军锋 张彪 +5 位作者 张昊 田开庆 田新民 王泰旭 罗凌燕 赵悦 《机电工程技术》 2025年第18期160-166,共7页
针对滚动轴承故障诊断中样本呈现全局冗余、局部稀疏的小样本问题,提出KNN-Transformer算法,融合Transformer自注意力机制与K近邻(KNN)算法。该算法通过Transformer编码器提取振动信号的层次化特征,利用KNN分类器替代传统Softmax层,解... 针对滚动轴承故障诊断中样本呈现全局冗余、局部稀疏的小样本问题,提出KNN-Transformer算法,融合Transformer自注意力机制与K近邻(KNN)算法。该算法通过Transformer编码器提取振动信号的层次化特征,利用KNN分类器替代传统Softmax层,解决小样本数据集场景下Softmax线性分类器易过拟合的问题。实验基于滚动轴承四自由度动力学仿真数据及西储大学(CWRU)轴承故障数据集展开。在仿真数据中,模型训练集与测试集准确率分别达100%和97%,AUC值为0.98,表明其对复杂振动信号的特征解析能力;在西储大学数据集中,测试集准确率达100%,AUC值为1,获得了较好的故障识别效果。通过对比实验显示,KNN-Transformer在精准率、召回率等指标上均优于单一KNN或Transformer模型,验证了其在机械故障诊断中的有效性与鲁棒性,为智能诊断提供了新方法。 展开更多
关键词 滚动轴承故障诊断 KNN-Transformer 自注意力机制 K近邻算法 小样本数据
在线阅读 下载PDF
基于快速学习图卷积网络的滚动轴承故障诊断研究
17
作者 宁少慧 董振才 +1 位作者 戎有志 周利东 《机床与液压》 北大核心 2025年第12期53-59,共7页
图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域... 图神经网络跨层的递归邻域扩展为训练大型密集图带来时间方面的挑战,导致轴承故障诊断的训练效率不高。针对此问题,提出一种基于快速学习图卷积网络方法并将其应用于滚动轴承故障诊断中。利用快速傅里叶变换(FFT)将采集的轴承故障时域信号转化为频域数据,再利用K近邻(KNN)算法将频域信号转换为图数据,以图数据显示频域特征,极大丰富了输入信息;引入快速学习图卷积网络(Fast-GCN)模型,通过重要性采样对故障特征进行学习;最后,利用Log-Softmax函数输出最终分类结果,从而实现滚动轴承单一故障的分类。实验结果表明:所提模型在保证故障分类准确率的前提下,诊断速度显著提升,甚至比图卷积神经网络(GCN)的诊断速度增加了约1倍,且所提方法具有良好的半监督诊断性能与泛化能力。 展开更多
关键词 滚动轴承 故障诊断 K近邻(KNN)算法 快速傅里叶变换(FFT) 快速学习图卷积网络(Fast-GCN)
在线阅读 下载PDF
基于交互式分析的多源航迹关联融合方法
18
作者 陈晓慧 刘建湘 +2 位作者 张匆 张兵 赵云鹏 《信息工程大学学报》 2025年第5期608-616,共9页
针对传统航迹关联算法正确率不高、交互分析解决航迹关联融合任务研究较少等问题,提出一种基于交互式分析的多源船舶目标航迹关联融合方法。首先改进最近邻距离的航迹关联算法进行中断航迹关联和多源航迹关联,其次发挥“人在回路”的交... 针对传统航迹关联算法正确率不高、交互分析解决航迹关联融合任务研究较少等问题,提出一种基于交互式分析的多源船舶目标航迹关联融合方法。首先改进最近邻距离的航迹关联算法进行中断航迹关联和多源航迹关联,其次发挥“人在回路”的交互式分析优势,通过评估传感器稳定性计算其在航迹融合过程中的权重,最后采用基于插值拟合的中断航迹拼接方法和基于加权平均的多源航迹融合方法实现航迹融合。实验结果表明,所提出的航迹关联算法能够有效提高中断航迹关联的关联正确率,降低多源航迹关联的关联错误率,设计的交互式分析系统能够验证融合算法的有效性,通过交互式分析和改进的关联融合算法,能够更准确地完成中断航迹和多源航迹的关联任务。 展开更多
关键词 最近邻距离算法 航迹关联 航迹融合 交互式分析
在线阅读 下载PDF
KMDW和ISVDD方法在钻头磨损状态识别中的应用
19
作者 郝旺身 娄本池 +4 位作者 董辛旻 王林恒 朱春辉 陈世金 王亚坤 《重庆理工大学学报(自然科学)》 北大核心 2025年第7期179-186,共8页
为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVD... 为识别钻头的磨损状态,解决多分类过程中支持向量数据描述(SVDD)对混叠样本识别精度差的问题,提出一种基于结合K均值密度权重(KMDW)聚类和改进SVDD(ISVDD)的方法。采用小波包分解多尺度排列熵值(WPD-MPE)方法提取特征向量;结合KMDW和SVDD模型进行故障分类,对混叠样本采用K近邻隶属度值进行识别,并采用改进的蝴蝶优化算法(IBOA)优化SVDD模型参数。在标准数据集上验证所提方法的优越性,结果表明:加入K近邻隶属度值可使F值和准确率分别提升6.36%和6.59%;KMDW相比K均值聚类方法的ARI值和NMI值分别提升10.01%和10.75%,能够达到更好的聚类效果;经蝴蝶优化算法改进后模型识别精度进一步提高。将所提方法应用于钻头磨损状态的识别,识别准确率达到92.83%,证明其具有较好的识别精度和通用性。 展开更多
关键词 SVDD K均值密度权重聚类 蝴蝶优化算法 K近邻算法 钻头磨损状态识别
在线阅读 下载PDF
基于K近邻算法的学生分层教育管理策略
20
作者 彭琳 吴逸凡 汪宇 《计算机教育》 2025年第9期247-251,共5页
针对当前教育行业普遍使用同一标准管理学生,忽视个体之间的差异而导致教育效率低下、资源浪费等问题,提出基于K近邻算法的学生分层教育管理思路,阐述实验设计流程,通过分析实验数据后给出针对不同群体的分层管理策略。
关键词 K近邻算法 分层教育 教育管理
在线阅读 下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部