Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate...Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.展开更多
This paper designs distributed Nash equilibrium seeking strategies for heterogeneous dynamic cyber-physical systems.In particular, we are concerned with parametric uncertainties in the control channel of the players. ...This paper designs distributed Nash equilibrium seeking strategies for heterogeneous dynamic cyber-physical systems.In particular, we are concerned with parametric uncertainties in the control channel of the players. Moreover, the weights on communication links can be compromised by time-varying uncertainties, which can result from possibly malicious attacks,faults and disturbances. To deal with the unavailability of measurement of optimization errors, an output observer is constructed,based on which adaptive laws are designed to compensate for physical uncertainties. With adaptive laws, a new distributed Nash equilibrium seeking strategy is designed by further integrating consensus protocols and gradient search algorithms.Moreover, to further accommodate compromised communication weights resulting from cyber-uncertainties, the coupling strengths of the consensus module are designed to be adaptive. As a byproduct, the coupling strengths are independent of any global information. With theoretical investigations, it is proven that the proposed strategies are resilient to these uncertainties and players' actions are convergent to the Nash equilibrium. Simulation examples are given to numerically validate the effectiveness of the proposed strategies.展开更多
基金supported in part by the National Natural Science Foundation of China(62173051)the Fundamental Research Funds for the Central Universities(2024CDJCGJ012,2023CDJXY-010)+1 种基金the Chongqing Technology Innovation and Application Development Special Key Project(CSTB2022TIADCUX0015,CSTB2022TIAD-KPX0162)the China Postdoctoral Science Foundation(2024M763865)
文摘Dear Editor,This letter addresses the impulse game problem for a general scope of deterministic,multi-player,nonzero-sum differential games wherein all participants adopt impulse controls.Our objective is to formulate this impulse game problem with the modified objective function including interaction costs among the players in a discontinuous fashion,and subsequently,to derive a verification theorem for identifying the feedback Nash equilibrium strategy.
基金supported by the National Key R&D Program of China(2022ZD0119604)the National Natural Science Foundation of China(NSFC)(62173181,62222308,62221004)the Natural Science Foundation of Jiangsu Province(BK20220139)
文摘This paper designs distributed Nash equilibrium seeking strategies for heterogeneous dynamic cyber-physical systems.In particular, we are concerned with parametric uncertainties in the control channel of the players. Moreover, the weights on communication links can be compromised by time-varying uncertainties, which can result from possibly malicious attacks,faults and disturbances. To deal with the unavailability of measurement of optimization errors, an output observer is constructed,based on which adaptive laws are designed to compensate for physical uncertainties. With adaptive laws, a new distributed Nash equilibrium seeking strategy is designed by further integrating consensus protocols and gradient search algorithms.Moreover, to further accommodate compromised communication weights resulting from cyber-uncertainties, the coupling strengths of the consensus module are designed to be adaptive. As a byproduct, the coupling strengths are independent of any global information. With theoretical investigations, it is proven that the proposed strategies are resilient to these uncertainties and players' actions are convergent to the Nash equilibrium. Simulation examples are given to numerically validate the effectiveness of the proposed strategies.