High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transit...High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transition kinetics remain poorly understood.Here,we investigate the formation of metastable phases and nanostructures in germanium via controllable transition pathways of β-Sn Ge under rapid decompression at different rates.High-resolution transmission electron microscopy reveals three distinct metastable phases with the distinctive nanostructures:an almost perfect st12 Ge crystal,nanosized bc8/r8 structures with amorphous boundaries,and amorphous Ge with nanosized clusters (0.8–2.5 nm).Fast in situ x-ray diffraction and x-ray absorption measurements indicate that these nanostructured products form in certain pressure regions via distinct kinetic pathways and are strongly correlated with nucleation rates and electronic transitions mediated by compression rate,temperature,and stress.This work provides deep insight into the controllable synthesis of metastable materials with unique crystal symmetries and nanostructures for potential applications.展开更多
Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was appli...Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue.展开更多
Precise tumor targeting and therapy is a major trend in cancer treatment.Herein,we designed a tumor acidic microenvironment activatable drug loaded DNA nanostructure,in which,we made a clever use of the sequences of A...Precise tumor targeting and therapy is a major trend in cancer treatment.Herein,we designed a tumor acidic microenvironment activatable drug loaded DNA nanostructure,in which,we made a clever use of the sequences of AS1411 and i-motif,which can partially hybridize,and designed a simple while robust DNA D-strand nanostructure,in which,i-motif sequence was designed to regulate the binding ability of the AS1411 aptamer to target tumor.In the normal physiological environment,i-motif inhibits the targeting ability of AS1411.In the acidic tumor microenvironment,i-motif forms a quadruplex conformation and dissociates from AS1411,restoring the targeting ability of AS1411.Only when acidic condition and tumor cell receptor are present,this nanostructure can be internalized by the tumor cells.Moreover,the structure change of this nanostructure can realize the release of loaded drug.This drug loaded A-I-Duplex DNA structure showed cancer cell and spheroid targeting and inhibition ability,which is promising in the clinical cancer therapy.展开更多
This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte,offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality.The surfac...This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte,offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality.The surface was characterized before and after immersion testing using field emission scanning electron microscopy(FESEM),energy-dispersive X-ray spectroscopy(EDX),and X-ray diffraction(XRD).Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium.Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid(SBF),surpassing that of microstructured MgO.Hydrogen evolution decreased from 912±38μL cm^(-2)for untreated Mg to 615±32μL cm^(-2)for the Mg/MgO nanostructure and 545±29μL cm^(-2)for the Mg/Mg O/HA sample.These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection,improved biomineralization,reduced hemolysis and increased cell viability,and reduced H_(2)generation.展开更多
Osteogenic ability impairment and myelosuppression are common complications of chemotherapy and many chemotherapeutics can affect the skeletal system.Skeletal system protection is necessary for cancer chemotherapy.In ...Osteogenic ability impairment and myelosuppression are common complications of chemotherapy and many chemotherapeutics can affect the skeletal system.Skeletal system protection is necessary for cancer chemotherapy.In this study,osteogenic growth peptide(OGP)and tetrahedral framework nucleic-acid nanostructures(tFNAs)are combined to form a peptide-DNA complex OGP-tFNAs,which aims to combine the positive biological effect on tissue protection and regeneration.The bone marrow protection and bone formation effect of OGP-tFNAs are investigated in chemotherapy-induced myelosuppressive mice.The results show that OGP-tFNAs could reduce the cell damage degree from 5-fluorouracil(5-FU)in vitro and maintained the osteogenic differentiation potential.Furthermore,OGP-tFNAs accelerate bone defect regeneration in myelosuppressive mice.In conclusion,OGP-tFNAs could protect the osteogenic differentiation potential of bone marrow stromal cells(BMSCs)from 5-FU injury and maintain the bone formation ability of myelosuppressive mice suffering from chemotherapy.展开更多
The effects of gradient nanostructures induced by supersonic fine particle bombardment(SFPB)on the surface integrity,microstructural evolution,and mechanical properties of a Ni-W-Co-Ta medium-heavy alloy(MHA)were syst...The effects of gradient nanostructures induced by supersonic fine particle bombardment(SFPB)on the surface integrity,microstructural evolution,and mechanical properties of a Ni-W-Co-Ta medium-heavy alloy(MHA)were systematically investigated.The results show that gradient nanostructures are formed on the surface of Ni-W-Co-Ta MHA after SFPB treatment.At a gas pressure of 1.0 MPa and an impact time of 60 s,the ultimate tensile strength and yield strength of the alloy reached the maximum values of 1236 MPa and 758 MPa,respectively,which are 22.5%and 38.8%higher than those of the solid solution treated alloy,and the elongation(46.3%)is close to that of the solid solution treated alloy,achieving the optimal strength–ductility synergy.However,microcracks appear on the surface with excessive gas pressure and impact time,generating the relaxed residual stress and decreased strength.With the increase of the impact time and gas pressure,the depth of the deformation layer and the surface microhardness gradually increase,reaching the maximum values(29μm and HV 451)at 1.0 MPa and 120 s.The surface grain size is refined to a minimum of 11.67 nm.Notably,SFPB treatment has no obvious effect on elongation,and the fracture mode changes from the ductile fracture before treatment to ductile–brittle mixed fracture after treatment.展开更多
Solid oxide cells(SOCs)are attractive electrochemical energy conversion/storage technologies for electricity/green hydrogen production because of the high efficiencies,all-solid structure,and superb reversibility.Neve...Solid oxide cells(SOCs)are attractive electrochemical energy conversion/storage technologies for electricity/green hydrogen production because of the high efficiencies,all-solid structure,and superb reversibility.Nevertheless,the widespread applications of SOCs are remarkably restricted by the inferior stability and high material costs induced by the high operational temperatures(600-800℃).Tremendous research efforts have been devoted to suppressing the operating temperatures of SOCs to decrease the overall costs and enhance the long-term durability.However,fuel electrodes as key components in SOCs suffer from insufficient(electro)catalytic activity and inferior impurity tolerance/redox resistance at reduced temperatures.Nanostructures and relevant nanomaterials exhibit great potential to boost the performance of fuel electrodes for low-temperature(LT)-SOCs due to the unique surface/interface properties,enlarged active sites,and strong interaction.Herein,an in-time review about advances in the design and fabrication of nanostructured fuel electrodes for LT-SOCs is presented by emphasizing the crucial role of nanostructure construction in boosting the performance of fuel electrodes and the relevant/distinct material design strategies.The main achievements,remaining challenges,and research trends about the development of nanostructured fuel electrodes in LT-SOCs are also presented,aiming to offer important insights for the future development of energy storage/conversion technologies.展开更多
High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-fr...High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-friendliness.In this report,we prepared magnesium vanadate(MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times(1,3,and 6 h)and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds.The newly prepared MgVO-1 h,MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs.Compared to the MgVO-1 h and MgVO-6 h cathodes,the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g^(-1) at 1 A g^(-1) over 500 cycles and excellent rate behavior(291.58 mA h g^(-1) at 3.75 A g^(-1))with high cycling stability(116%)over 2000 cycles at 5 A g^(-1).Moreover,the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics.Additionally,various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn^(2+)ions during charge and discharge processes.This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs.展开更多
The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth unders...The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems.展开更多
High porosity and high brittleness are the main reasons that limit the long-term service life of the alumina-titanium oxide composite coating.Herein,a metastable nanostructured aluminatitanium oxide composite coating ...High porosity and high brittleness are the main reasons that limit the long-term service life of the alumina-titanium oxide composite coating.Herein,a metastable nanostructured aluminatitanium oxide composite coating with high density and high properties was synthesized by plasma spraying of TiO_(2)-Al composite powder.The main phases of the metastable nanostructured alumina-titanium oxide wereγ-Al_(2)O_(3),TiO and AlTiO_(2).The coating,as prepared,contains various metastable microstructures,such as fine-grained,intra-/inter-granular,and"self-locking"microstructures.These metastable microstruc-tures are important for the improvement of hardness and toughness of the coating.Compared with other alumina-based composite coatings,the metastable nanostructured aluminatitanium oxide composite coating showed the most impressive overall performance.The reinforcing and toughening mechanism of the metastable alumina-titanium oxide composite coating included fine grain strengthening and self-toughening of the metastable microstructure.展开更多
1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineeri...1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineering[1].At present,NM alloys can be produced by several synthesis methods,including sintering of nanocomposites[2,3],physical or chemical vapour deposition(PVD or CVD)[4],crystallization of metallic glasses[5],and severe plastic deforma-tion(SPD)[6-8].However,industry applications of bulk NM alloys produced by these methods are significantly restricted by their ge-ometrical and size limitations.Thus,the fabrication of large-scale NM alloys remains challenging.展开更多
High-strength Mg alloys have historically suffered from a challenge in achieving good ductility.Here,we report an asymmetric gradient nanostructure design prepared by ultrasonic severe surface rolling(USSR)at room tem...High-strength Mg alloys have historically suffered from a challenge in achieving good ductility.Here,we report an asymmetric gradient nanostructure design prepared by ultrasonic severe surface rolling(USSR)at room temperature.Unlike conventional gradient-nanostructured materials that employ a hard-soft-hard sandwich structure,this new design incorporates a combined gradient distribution of grain microstructure and nanoprecipitates throughout the entire sample along the thickness direction.The nanoprecipitates are identified as theβ-Mg_(17)Al_(12)phase and are primarily generated through In-situ pre-cipitation promoted by the USSR-induced high-density dislocations and temperature increment.Benefit-ing from this unique microstructure,an outstanding strength-ductility synergy is achieved,with a yield strength of 372.8 MPa,an ultimate tensile strength of 453.3 MPa,and an elongation of 11.5%.The en-hanced strength can be attributed to several mechanisms,including grain boundary strengthening,dislocation strengthening,precipitation strengthening,twin strengthening,and hetero-deformation induced(HDI)strengthening.The HDI hardening and activation of multiple deformation modes also contribute to good ductility.This work provides a promising and effective method for overcoming the longstanding strength-ductility trade-offdilemma in Mg alloys.展开更多
Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In th...Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems.展开更多
Current Ti-based orthopedic implants often suffer from fatigue damage,therefore shortening their service lifespan.To solve this issue,in this study,mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb)was subjected to surface ...Current Ti-based orthopedic implants often suffer from fatigue damage,therefore shortening their service lifespan.To solve this issue,in this study,mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb)was subjected to surface mechanical attrition treatment(SMAT).Effects of various SMAT process parameters,including ball diameter and treatment duration,on the surface integrity of P-Ti6Al7Nb were investigated,specifically in terms of surface quality,surface nanocrystalline layer,and residual stress.Subsequently,the microstructure,in-depth residual stress and microhardness distributions,surface roughness,and fatigue behavior in simulated body fluids of optimally SMATed Ti-6Al-7Nb(S-Ti6Al7Nb)were examined and compared to those of P-Ti6Al7Nb.Results showed that based on the experimental conditions established in the present research,the optimal parameters were determined to be a 3 mm ball diameter and a 15 min treatment duration,which resulted in excellent surface integrity;S-Ti6Al7Nb showed a 300μm-thick gradient nanostructured layer comprising the thickest nanocrystalline layer of about 20μm,a 1000μm-deep residual compressive stress field with the maximum surface residual compressive stress,and a microconcave topography but free of any defects or cracks.The microstructural evolution mechanism was also elucidated,revealing that the combination of multidirectional primary and secondary twins’intersections and twin-dislocation interactions contributed to grain refinement.Compared to P-Ti6Al7Nb,S-Ti6Al7Nb exhibited a 40%improvement in fatigue strength,owing to synergistic effects of the gradient nanostructured layer,surface work hardening,high amplitude of residual compressive stress,and improved surface integrity.These factors effectively prevented the initiation of fatigue crack at the surface and shifted it to the sublayer,and inhibited the subsequent crack propagation.展开更多
Fluorescence Anisotropy(FA)is an effective biochemical detection method based on molecular rotations.Graphene oxide(GO)has been extensively used as an FA amplifier.However,the enhancement of FA by GO alone is limited ...Fluorescence Anisotropy(FA)is an effective biochemical detection method based on molecular rotations.Graphene oxide(GO)has been extensively used as an FA amplifier.However,the enhancement of FA by GO alone is limited and the strong scattering of GO will easily make the measurement of FA inaccurate.In order to address these problems,an octopus-like DNA nanostructure(ODN)was designed and coupled with GO to enhance the FA together in this work.By mimicking the multi-clawed structure of the octopus,the ODN can be adsorbed on GO tightly,which not only could improve the sensitivity because of the double FA enhancement abilities of GO and ODN,but also could improve the specificity due to the decrease of the nonspecific interaction in complex samples.Furthermore,ODN could maintain a certain distance between the fluorophore and GO to reduce the fluorescence quenching efficiency of GO,which could improve the accuracy.This method has been applied for the detection of hepatitis B virus DNA(HBV-DNA)in a range of 1-50 nmol/L and the limit of detection(LOD)was 330 pmol/L.In addition,the proposed method has been successfully utilized to detect HBV-DNA in human serum,indicating that this method has a great practical application prospect.展开更多
Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)s...Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)strategy has been applied to study the global assembly process of DNA origami and DNA bricks.Through the temperature dependent size and intensity profiles,the self-assembly process of various DNA nanostructures with different morphologies have been well-studied and the temperature transition ranges could be observed.Taking advantage of the DLS information,rapid preparation of the DNA origami and the brick assembly has been realized through a constant temperature annealing.Our results demonstrate that the DLS-based strategy provides a convenient and robust tool to study the dynamic process of forming hieratical DNA structures,which will benefit understanding the mechanism of self-assembly of DNA nanostructures.展开更多
Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanosphe...Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.展开更多
This research focuses on the electric behavior of a mixed ferrielectric sulflower-like nanostructure.The structure includes a core with spin S_(i)^(Z)-1 atoms and a shell with spin σ_(j)^(Z)-5/2 atoms.The Blume–Cape...This research focuses on the electric behavior of a mixed ferrielectric sulflower-like nanostructure.The structure includes a core with spin S_(i)^(Z)-1 atoms and a shell with spin σ_(j)^(Z)-5/2 atoms.The Blume–Capel model and the Monte Carlo technique(MCt)with the Metropolis algorithm are employed.Diagrams are established for absolute zero,investigating stable spin configurations correlated with various physical parameters.The MCt method explores phase transition behavior and electric hysteresis cycles under different physical parameters.展开更多
Triple-negative breast cancer,due to its aggressive nature and lack of targeted treatment,faces serious challenges in breast cancer treatment.Conventional therapies,such as chemotherapy,are encumbered by a range of li...Triple-negative breast cancer,due to its aggressive nature and lack of targeted treatment,faces serious challenges in breast cancer treatment.Conventional therapies,such as chemotherapy,are encumbered by a range of limitations,and there is an urgent need for more effective treatment strategies.Ferroptosis,as an iron-dependent form of cell death,has exhibited promising potential in cancer treatment.Combining ferroptosis with other cancer therapies offers new avenues for treatment.Tetrahedral DNA nanostructure(TDN),a novel DNA-based three-dimensional(3D)nanomaterial,is promising drug delivery vehicle and can be utilized for functionalizing inorganic nanomaterials.In this work,we have demonstrated the preparation of Fe_(3)O_(4)-PEI@TDN-DOX nanocomposites and elucidated their antitumor mechanism.The TDN facilitated the enhanced cellular uptake of polyetherimide(PEI)-modified Fe_(3)O_(4),and the delivery of the chemotherapeutic drug doxorubicin(DOX)further augmented their anti-tumor effect.This novel strategy can destroy the tumor redox homeostasis and produce overwhelming lipid peroxides,consequently sensitizing the tumor to ferroptosis.The integration of ferroptosis with other cancer therapies opens up new possibilities for treatment.This research provides valuable mechanistic insights and practical strategies for leveraging nanotechnology to induce ferroptosis and amplify its impact on tumor cells.展开更多
The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated ...The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.展开更多
基金supported by the National Nature Science Foundation of China(NSFC)(Grant No.11974033)Xuqiang Liu acknowledges support from the National Postdoctoral Foundation Project of China under Grant No.GZC20230215+2 种基金the National Nature Science Foundation of China under Grants No.12404001The XRD measurements at room and high temperatures were performed at the 4W2 HPStation of the Beijing Synchrotron Radiation Facility(BSRF)and beamline 15U1 of the Shanghai Synchrotron Radiation Facility(SSRF)In situ high-pressure,low-temperature XRD measurements were conducted at sector 16 ID-B,HPCAT of the Advanced Photon Source,and were supported by DOE-NNSA under Award No.DE-NA0001974.
文摘High-pressure β-Sn germanium may transform into diverse metastable allotropes with distinctive nanostructures and unique physical properties via multiple pathways under decompression.However,the mechanism and transition kinetics remain poorly understood.Here,we investigate the formation of metastable phases and nanostructures in germanium via controllable transition pathways of β-Sn Ge under rapid decompression at different rates.High-resolution transmission electron microscopy reveals three distinct metastable phases with the distinctive nanostructures:an almost perfect st12 Ge crystal,nanosized bc8/r8 structures with amorphous boundaries,and amorphous Ge with nanosized clusters (0.8–2.5 nm).Fast in situ x-ray diffraction and x-ray absorption measurements indicate that these nanostructured products form in certain pressure regions via distinct kinetic pathways and are strongly correlated with nucleation rates and electronic transitions mediated by compression rate,temperature,and stress.This work provides deep insight into the controllable synthesis of metastable materials with unique crystal symmetries and nanostructures for potential applications.
基金The financial supports by the Chinese Academy of Sciences(Nos.XDC04030300 and XDB0510303)CAS-HK Joint Laboratory of Nanomaterials and MechanicsShenyang National Laboratory for Materials Science are acknowledged.
文摘Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue.
基金funded by the National Natural Science Foundation of China(No.32271464)the Hunan Provincial Natural Science Foundation for Distinguished Young Scholars(No.2022JJ10086)+2 种基金the Innovation-Driven Project of Central South University(No.2020CX048)Hunan Provincial High-Level Health Talents(No.20240304088)Fund of the Hunan Provincial Natural Science Foundation and the Hunan Medical Products Administration(No.2023JJ60501)。
文摘Precise tumor targeting and therapy is a major trend in cancer treatment.Herein,we designed a tumor acidic microenvironment activatable drug loaded DNA nanostructure,in which,we made a clever use of the sequences of AS1411 and i-motif,which can partially hybridize,and designed a simple while robust DNA D-strand nanostructure,in which,i-motif sequence was designed to regulate the binding ability of the AS1411 aptamer to target tumor.In the normal physiological environment,i-motif inhibits the targeting ability of AS1411.In the acidic tumor microenvironment,i-motif forms a quadruplex conformation and dissociates from AS1411,restoring the targeting ability of AS1411.Only when acidic condition and tumor cell receptor are present,this nanostructure can be internalized by the tumor cells.Moreover,the structure change of this nanostructure can realize the release of loaded drug.This drug loaded A-I-Duplex DNA structure showed cancer cell and spheroid targeting and inhibition ability,which is promising in the clinical cancer therapy.
基金The authors thank the DFG(KI 2169/2-1)the European Union(EU-RIA NOMAD,101091669)for funding this work+1 种基金The Micro and Nanoanalytics Facility(MNaF),funded by the DFG(DFG INST 221/131-1)at the University of Siegen,and the Materials Science Faculty of the Isfahan University of Technology(IUT)were utilized for some of the work and analysis,respectively.
文摘This study introduces a nanostructured MgO coating fabricated via anodization in a non-aqueous electrolyte,offering a novel approach to addressing the challenges of corrosion resistance and biofunctionality.The surface was characterized before and after immersion testing using field emission scanning electron microscopy(FESEM),energy-dispersive X-ray spectroscopy(EDX),and X-ray diffraction(XRD).Electrochemical impedance spectroscopy(EIS)and potentiodynamic polarization tests demonstrated a 2-fold reduction in the corrosion resistance compared to untreated magnesium.Biomineralization studies demonstrated the uniform formation of apatite with a Ca/P ratio of 1.35 on the nanostructured surface after 14 days in simulated body fluid(SBF),surpassing that of microstructured MgO.Hydrogen evolution decreased from 912±38μL cm^(-2)for untreated Mg to 615±32μL cm^(-2)for the Mg/MgO nanostructure and 545±29μL cm^(-2)for the Mg/Mg O/HA sample.These findings highlight the potential of nanostructured MgO coatings to advance Mg-based implants by providing enhanced corrosion protection,improved biomineralization,reduced hemolysis and increased cell viability,and reduced H_(2)generation.
基金supported by National Natural Science Foundation of China(Nos.82322015,82171006)Sichuan Province Youth Science and Technology Innovation Team(No.2022JDTD0021)+3 种基金Sichuan Science and Technology Program(No.2022NSFSC0002)West China Hospital of Stomatology Sichuan University(No.RCDWJS2024-3)Sichuan Science and Technology Program(Nos.2023NSFSC1706,2024NSFSC1589)Postdoctoral Science Foundation of China(No.BX20220220)。
文摘Osteogenic ability impairment and myelosuppression are common complications of chemotherapy and many chemotherapeutics can affect the skeletal system.Skeletal system protection is necessary for cancer chemotherapy.In this study,osteogenic growth peptide(OGP)and tetrahedral framework nucleic-acid nanostructures(tFNAs)are combined to form a peptide-DNA complex OGP-tFNAs,which aims to combine the positive biological effect on tissue protection and regeneration.The bone marrow protection and bone formation effect of OGP-tFNAs are investigated in chemotherapy-induced myelosuppressive mice.The results show that OGP-tFNAs could reduce the cell damage degree from 5-fluorouracil(5-FU)in vitro and maintained the osteogenic differentiation potential.Furthermore,OGP-tFNAs accelerate bone defect regeneration in myelosuppressive mice.In conclusion,OGP-tFNAs could protect the osteogenic differentiation potential of bone marrow stromal cells(BMSCs)from 5-FU injury and maintain the bone formation ability of myelosuppressive mice suffering from chemotherapy.
基金supported by the National key Research and Development Program of China(No.2022YFB3705200)the National Natural Science Foundation of China(Nos.U1804146,51905153,52111530068)+1 种基金the Science and Technology Innovation Team Project of Henan University of Science and Technology,China(No.2015XTD006)the Major Science and Technology Project of Henan Province,China(No.221100230200)。
文摘The effects of gradient nanostructures induced by supersonic fine particle bombardment(SFPB)on the surface integrity,microstructural evolution,and mechanical properties of a Ni-W-Co-Ta medium-heavy alloy(MHA)were systematically investigated.The results show that gradient nanostructures are formed on the surface of Ni-W-Co-Ta MHA after SFPB treatment.At a gas pressure of 1.0 MPa and an impact time of 60 s,the ultimate tensile strength and yield strength of the alloy reached the maximum values of 1236 MPa and 758 MPa,respectively,which are 22.5%and 38.8%higher than those of the solid solution treated alloy,and the elongation(46.3%)is close to that of the solid solution treated alloy,achieving the optimal strength–ductility synergy.However,microcracks appear on the surface with excessive gas pressure and impact time,generating the relaxed residual stress and decreased strength.With the increase of the impact time and gas pressure,the depth of the deformation layer and the surface microhardness gradually increase,reaching the maximum values(29μm and HV 451)at 1.0 MPa and 120 s.The surface grain size is refined to a minimum of 11.67 nm.Notably,SFPB treatment has no obvious effect on elongation,and the fracture mode changes from the ductile fracture before treatment to ductile–brittle mixed fracture after treatment.
基金supported by the National Key R&D Program of China(No.2022YFB4002502)the National Natural Science Foundation of China(No.22279057)。
文摘Solid oxide cells(SOCs)are attractive electrochemical energy conversion/storage technologies for electricity/green hydrogen production because of the high efficiencies,all-solid structure,and superb reversibility.Nevertheless,the widespread applications of SOCs are remarkably restricted by the inferior stability and high material costs induced by the high operational temperatures(600-800℃).Tremendous research efforts have been devoted to suppressing the operating temperatures of SOCs to decrease the overall costs and enhance the long-term durability.However,fuel electrodes as key components in SOCs suffer from insufficient(electro)catalytic activity and inferior impurity tolerance/redox resistance at reduced temperatures.Nanostructures and relevant nanomaterials exhibit great potential to boost the performance of fuel electrodes for low-temperature(LT)-SOCs due to the unique surface/interface properties,enlarged active sites,and strong interaction.Herein,an in-time review about advances in the design and fabrication of nanostructured fuel electrodes for LT-SOCs is presented by emphasizing the crucial role of nanostructure construction in boosting the performance of fuel electrodes and the relevant/distinct material design strategies.The main achievements,remaining challenges,and research trends about the development of nanostructured fuel electrodes in LT-SOCs are also presented,aiming to offer important insights for the future development of energy storage/conversion technologies.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIP)(No.2018R1A6A1A03025708).
文摘High-performance aqueous zinc(Zn)-ion batteries(AZIBs)have emerged as one of the greatest favorable candidates for next-generation energy storage systems because of their low cost,sustainability,high safety,and eco-friendliness.In this report,we prepared magnesium vanadate(MgVO)-based nanostructures by a facile single-step solvothermal method with varying experimental reaction times(1,3,and 6 h)and investigated the effect of the reaction time on the morphology and layered structure for MgVO-based compounds.The newly prepared MgVO-1 h,MgVO-3 h and MgVO-6 h samples were used as cathode materials for AZIBs.Compared to the MgVO-1 h and MgVO-6 h cathodes,the MgVO-3 h cathode showed a higher specific capacity of 492.74 mA h g^(-1) at 1 A g^(-1) over 500 cycles and excellent rate behavior(291.58 mA h g^(-1) at 3.75 A g^(-1))with high cycling stability(116%)over 2000 cycles at 5 A g^(-1).Moreover,the MgVO-3 h electrode exhibited good electrochemical performance owing to its fast Zn-ion diffusion kinetics.Additionally,various ex-situ analyses confirmed that the MgVO-3 h cathode displayed excellent insertion/extraction of Zn^(2+)ions during charge and discharge processes.This study offers an efficient method for the synthesis of nanostructured MgVO-based cathode materials for high-performance AZIBs.
基金supported by the National Key Research Program of China under Grant No.2024YFA1408000the National Natural Science Foundation of China(52231007,12327804,T2321003,22088101)+1 种基金in part by the National Key Research Program of China under Grant 2021YFA1200600the support from the U.S.National Science Foundation(CHE 2102482)。
文摘The ability to control the electrode interfaces in an electrochemical energy storage system is essential for achieving the desired electrochemical performance.However,achieving this ability requires an in-depth understanding of the detailed interfacial nanostructures of the electrode under electrochemical operating conditions.In-situ transmission electron microscopy(TEM)is one of the most powerful techniques for revealing electrochemical energy storage mechanisms with high spatiotemporal resolution and high sensitivity in complex electrochemical environments.These attributes play a unique role in understanding how ion transport inside electrode nanomaterials and across interfaces under the dynamic conditions within working batteries.This review aims to gain an in-depth insight into the latest developments of in-situ TEM imaging techniques for probing the interfacial nanostructures of electrochemical energy storage systems,including atomic-scale structural imaging,strain field imaging,electron holography,and integrated differential phase contrast imaging.Significant examples will be described to highlight the fundamental understanding of atomic-scale and nanoscale mechanisms from employing state-of-the-art imaging techniques to visualize structural evolution,ionic valence state changes,and strain mapping,ion transport dynamics.The review concludes by providing a perspective discussion of future directions of the development and application of in-situ TEM techniques in the field of electrochemical energy storage systems.
基金supported by the National Natural Science Foundation of China(Nos.52371063 and 52072110)the Natural Science Foundation of Hebei Province(No.E2018202034)+1 种基金the Central Funds Guiding the Local Science and Technology Development of Hebei Province(No.236Z7610G)the Graduate Innovation Project of Hebei Province(No.CXZZBS2022035).
文摘High porosity and high brittleness are the main reasons that limit the long-term service life of the alumina-titanium oxide composite coating.Herein,a metastable nanostructured aluminatitanium oxide composite coating with high density and high properties was synthesized by plasma spraying of TiO_(2)-Al composite powder.The main phases of the metastable nanostructured alumina-titanium oxide wereγ-Al_(2)O_(3),TiO and AlTiO_(2).The coating,as prepared,contains various metastable microstructures,such as fine-grained,intra-/inter-granular,and"self-locking"microstructures.These metastable microstruc-tures are important for the improvement of hardness and toughness of the coating.Compared with other alumina-based composite coatings,the metastable nanostructured aluminatitanium oxide composite coating showed the most impressive overall performance.The reinforcing and toughening mechanism of the metastable alumina-titanium oxide composite coating included fine grain strengthening and self-toughening of the metastable microstructure.
基金funding from the Australian Research Council(ARC Discovery Project,Nos.DP200101408 and DP230100183).
文摘1.Introduction The synthesis of bulk nanostructured multiphase(NM)mate-rials with extreme properties such as high hardness and strength is one of the most interesting research topics in materials science and engineering[1].At present,NM alloys can be produced by several synthesis methods,including sintering of nanocomposites[2,3],physical or chemical vapour deposition(PVD or CVD)[4],crystallization of metallic glasses[5],and severe plastic deforma-tion(SPD)[6-8].However,industry applications of bulk NM alloys produced by these methods are significantly restricted by their ge-ometrical and size limitations.Thus,the fabrication of large-scale NM alloys remains challenging.
基金supported by the Fundamental Research Funds for the Central Universities(No.B210202094)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX230661).
文摘High-strength Mg alloys have historically suffered from a challenge in achieving good ductility.Here,we report an asymmetric gradient nanostructure design prepared by ultrasonic severe surface rolling(USSR)at room temperature.Unlike conventional gradient-nanostructured materials that employ a hard-soft-hard sandwich structure,this new design incorporates a combined gradient distribution of grain microstructure and nanoprecipitates throughout the entire sample along the thickness direction.The nanoprecipitates are identified as theβ-Mg_(17)Al_(12)phase and are primarily generated through In-situ pre-cipitation promoted by the USSR-induced high-density dislocations and temperature increment.Benefit-ing from this unique microstructure,an outstanding strength-ductility synergy is achieved,with a yield strength of 372.8 MPa,an ultimate tensile strength of 453.3 MPa,and an elongation of 11.5%.The en-hanced strength can be attributed to several mechanisms,including grain boundary strengthening,dislocation strengthening,precipitation strengthening,twin strengthening,and hetero-deformation induced(HDI)strengthening.The HDI hardening and activation of multiple deformation modes also contribute to good ductility.This work provides a promising and effective method for overcoming the longstanding strength-ductility trade-offdilemma in Mg alloys.
基金supported by the National Natural Science Foundation of China(No.52201043,T2125003,12174172)the Natural Science Foundation of Fujian(Nos.2020J01857)+1 种基金the Fuzhou Institute of Oceanography project(No.2021F06)the Fuzhou City Science and Technology Cooperation Project(2021-S-091,2022-R-003)
文摘Triboelectric nanogenerators(TENGs)have emerged as promising candidates for integrating with flexible electronics as self-powered systems owing to their intrinsic flexibility,biocompatibility,and miniaturization.In this study,an improved flexible TENG with a tile-nanostructured MXene/polymethyl methacrylate(PMMA)composite electrode(MP-TENG)is proposed for use in wireless human health monitor.The multifunctional tile-nanostructured MXene/PMMA film,which is self-assembled through vacuum filtration,exhibits good conductivity,excellent charge capacity,and high flexibility.Thus,the MXene/PMMA composite electrode can simultaneously function as a charge-generating,charge-trapping,and charge-collecting layer.Furthermore,the charge-trapping capacity of a tile nanostructure can be optimized on the basis of the PMMA concentration.At a mass fraction of 4%PMMA,the MP-TENG achieves the optimal output performance,with an output voltage of 37.8 V,an output current of 1.8μA,and transferred charge of 14.1 nC.The output power is enhanced over twofold compared with the pure MXene-based TENG.Moreover,the MP-TENG has sufficient power capacity and durability to power small electronic devices.Finally,a wireless human motion monitor based on the MP-TENG is utilized to detect physiological signals in various kinematic motions.Consequently,the proposed performance-enhanced MP-TENG proves a considerable potential for use in health monitoring,telemedicine,and self-powered systems.
基金supported by the National Natural Science Foundation of China(Grant Nos.51631007 and 51971171).
文摘Current Ti-based orthopedic implants often suffer from fatigue damage,therefore shortening their service lifespan.To solve this issue,in this study,mechanically polished Ti-6Al-7Nb(P-Ti6Al7Nb)was subjected to surface mechanical attrition treatment(SMAT).Effects of various SMAT process parameters,including ball diameter and treatment duration,on the surface integrity of P-Ti6Al7Nb were investigated,specifically in terms of surface quality,surface nanocrystalline layer,and residual stress.Subsequently,the microstructure,in-depth residual stress and microhardness distributions,surface roughness,and fatigue behavior in simulated body fluids of optimally SMATed Ti-6Al-7Nb(S-Ti6Al7Nb)were examined and compared to those of P-Ti6Al7Nb.Results showed that based on the experimental conditions established in the present research,the optimal parameters were determined to be a 3 mm ball diameter and a 15 min treatment duration,which resulted in excellent surface integrity;S-Ti6Al7Nb showed a 300μm-thick gradient nanostructured layer comprising the thickest nanocrystalline layer of about 20μm,a 1000μm-deep residual compressive stress field with the maximum surface residual compressive stress,and a microconcave topography but free of any defects or cracks.The microstructural evolution mechanism was also elucidated,revealing that the combination of multidirectional primary and secondary twins’intersections and twin-dislocation interactions contributed to grain refinement.Compared to P-Ti6Al7Nb,S-Ti6Al7Nb exhibited a 40%improvement in fatigue strength,owing to synergistic effects of the gradient nanostructured layer,surface work hardening,high amplitude of residual compressive stress,and improved surface integrity.These factors effectively prevented the initiation of fatigue crack at the surface and shifted it to the sublayer,and inhibited the subsequent crack propagation.
基金supported by the National Natural Science Foundation of China(Nos.21974109,22322409)the Natural Science Foundation of Chongqing(No.CSTB2022NSCQ-MSX1662)the Fundamental Research Funds for the Central Universities(No.XDJK2019TY003)。
文摘Fluorescence Anisotropy(FA)is an effective biochemical detection method based on molecular rotations.Graphene oxide(GO)has been extensively used as an FA amplifier.However,the enhancement of FA by GO alone is limited and the strong scattering of GO will easily make the measurement of FA inaccurate.In order to address these problems,an octopus-like DNA nanostructure(ODN)was designed and coupled with GO to enhance the FA together in this work.By mimicking the multi-clawed structure of the octopus,the ODN can be adsorbed on GO tightly,which not only could improve the sensitivity because of the double FA enhancement abilities of GO and ODN,but also could improve the specificity due to the decrease of the nonspecific interaction in complex samples.Furthermore,ODN could maintain a certain distance between the fluorophore and GO to reduce the fluorescence quenching efficiency of GO,which could improve the accuracy.This method has been applied for the detection of hepatitis B virus DNA(HBV-DNA)in a range of 1-50 nmol/L and the limit of detection(LOD)was 330 pmol/L.In addition,the proposed method has been successfully utilized to detect HBV-DNA in human serum,indicating that this method has a great practical application prospect.
基金supported by the National Natural Science Foundation of China(No.21971248)。
文摘Understanding the dynamic assembly process of DNA nanostructures is important for developing novel strategy to design and construct functional devices.In this work,temperature-controlled dynamic light scattering(DLS)strategy has been applied to study the global assembly process of DNA origami and DNA bricks.Through the temperature dependent size and intensity profiles,the self-assembly process of various DNA nanostructures with different morphologies have been well-studied and the temperature transition ranges could be observed.Taking advantage of the DLS information,rapid preparation of the DNA origami and the brick assembly has been realized through a constant temperature annealing.Our results demonstrate that the DLS-based strategy provides a convenient and robust tool to study the dynamic process of forming hieratical DNA structures,which will benefit understanding the mechanism of self-assembly of DNA nanostructures.
基金supported by National Natural Science Foundation of China(NSFC,Grant No.51972178)Natural Science Foundation of Ningbo(2022J139)Ningbo Yongjiang Talent Introduction Programme(2022A-227-G)
文摘Crystallineγ-Ga_(2)O_(3)@rGO core-shell nanostructures are synthesized in gram scale,which are accomplished by a facile sonochemical strategy under ambient condition.They are composed of uniformγ-Ga_(2)O_(3)nanospheres encapsulated by reduced graphene oxide(rGO)nanolayers,and their formation is mainly attributed to the existed opposite zeta potential between the Ga_(2)O_(3)and rGO.The as-constructed lithium-ion batteries(LIBs)based on as-fabricatedγ-Ga_(2)O_(3)@rGO nanostructures deliver an initial discharge capacity of 1000 mAh g^(-1)at 100 mA g^(-1)and reversible capacity of 600 mAh g^(-1)under 500 mA g^(-1)after 1000 cycles,respectively,which are remarkably higher than those of pristineγ-Ga_(2)O_(3)with a much reduced lifetime of 100 cycles and much lower capacity.Ex situ XRD and XPS analyses demonstrate that the reversible LIBs storage is dominant by a conversion reaction and alloying mechanism,where the discharged product of liquid metal Ga exhibits self-healing ability,thus preventing the destroy of electrodes.Additionally,the rGO shell could act robustly as conductive network of the electrode for significantly improved conductivity,endowing the efficient Li storage behaviors.This work might provide some insight on mass production of advanced electrode materials under mild condition for energy storage and conversion applications.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A3052258)funded by Researcher Supporting Project number (RSP2024R117), King Saud University, Riyadh, Saudi Arabia
文摘This research focuses on the electric behavior of a mixed ferrielectric sulflower-like nanostructure.The structure includes a core with spin S_(i)^(Z)-1 atoms and a shell with spin σ_(j)^(Z)-5/2 atoms.The Blume–Capel model and the Monte Carlo technique(MCt)with the Metropolis algorithm are employed.Diagrams are established for absolute zero,investigating stable spin configurations correlated with various physical parameters.The MCt method explores phase transition behavior and electric hysteresis cycles under different physical parameters.
基金supported by the National Key R&D Program of China(No.2019YFA0110600)the National Natural Science Foundation of China(Nos.82370929 and 81970916)+3 种基金the Sichuan Science and Technology Program(Nos.2022NSFSC0002 and 2023YFG022)Sichuan Province Youth Science and Technology Innovation Team(No.2022JDTD0021)Research and Develop Program,West China Hospital of Stomatology Sichuan University(No.RD03202302)the Research Funding from West China School/Hospital of Stomatology Sichuan University(No.QDJF2022-2)。
文摘Triple-negative breast cancer,due to its aggressive nature and lack of targeted treatment,faces serious challenges in breast cancer treatment.Conventional therapies,such as chemotherapy,are encumbered by a range of limitations,and there is an urgent need for more effective treatment strategies.Ferroptosis,as an iron-dependent form of cell death,has exhibited promising potential in cancer treatment.Combining ferroptosis with other cancer therapies offers new avenues for treatment.Tetrahedral DNA nanostructure(TDN),a novel DNA-based three-dimensional(3D)nanomaterial,is promising drug delivery vehicle and can be utilized for functionalizing inorganic nanomaterials.In this work,we have demonstrated the preparation of Fe_(3)O_(4)-PEI@TDN-DOX nanocomposites and elucidated their antitumor mechanism.The TDN facilitated the enhanced cellular uptake of polyetherimide(PEI)-modified Fe_(3)O_(4),and the delivery of the chemotherapeutic drug doxorubicin(DOX)further augmented their anti-tumor effect.This novel strategy can destroy the tumor redox homeostasis and produce overwhelming lipid peroxides,consequently sensitizing the tumor to ferroptosis.The integration of ferroptosis with other cancer therapies opens up new possibilities for treatment.This research provides valuable mechanistic insights and practical strategies for leveraging nanotechnology to induce ferroptosis and amplify its impact on tumor cells.
基金Funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(No.RG-21-09-53)。
文摘The natural Melanin/TiO_(2) was synthesized by the use of ultrasonication under UV radiation.The influence of natural melanin on the structural,optical and thermal properties of TiO_(2) nanoparticles was investigated by using Fourier transform infrared spectroscopy,thermogravimetric analysis and UV-Vis spectroscopy.It was observed that incorporating natural melanin on TiO_(2) nanoparticles(TiO_(2)-Mel)occurred at 2.01 eV with a low value of Urbach energy around 100 meV indicating improvement in the crystalline structure.Magnetic measurement at room temperature showed diamagnetic behavior.Furthermore,thermal results showed that TiO_(2)-Mel is stable even at temperatures up to 400℃.According to the results obtained by the thermal stability of melanin with titanium dioxide,it can be a good candidate in many applications such as solar cells and optoelectronics.