期刊文献+
共找到2,576篇文章
< 1 2 129 >
每页显示 20 50 100
Immobilization of MnO2 nanoflowers on coils using direct heating method for organic pollutant remediation
1
作者 Sin Ling Chiam Swee-Yong Pung +1 位作者 Chee Meng Koe Fei Yee Yeoh 《Water Science and Engineering》 2025年第2期165-176,共12页
The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment.This study presented a rapid and cost-effec... The immobilization of catalysts on supporting substrates for the removal of organic pollutants is a crucial strategy for mitigating catalyst loss during wastewater treatment.This study presented a rapid and cost-effective direct heating method for synthesizing MnO2 nanoflowers on coil substrates for the removal of organic pollutants.Traditional methods often require high power,expensive equipment,and long synthesis times.In contrast,the direct heating approach successfully synthesized MnO2 nanoflowers in just 10 min with a heating power of approximately 40 W·h after the heating power and duration were optimized.These nanoflowers effectively degraded 99%Rhodamine B in 60 min with consistent repeatability.The catalytic mechanisms are attributed to crystal defects in MnO2,which generate electrons to produce H2O2.Mn2+ions in the acidic solution further dissociate H2O2 molecules into hydroxyl radicals(·OH).The high efficiency of this synthesis method and the excellent reusability of MnO2 nanoflowers highlight their potential as a promising solution for the development of supporting MnO2 catalysts for organic dye removal applications. 展开更多
关键词 mno2 nanostructure Supporting catalyst Dye removal Direct heating Organic pollutants
在线阅读 下载PDF
Facile synthesis copper-modified titania(Cu/TiO_(2))nanoparticles for high-efficiency Congo red adsorption
2
作者 Shuaishuai Zhang Qingwen Luo +3 位作者 Xinan Sun Lin Chi Peng Sun Lianke Zhang 《Chinese Journal of Chemical Engineering》 2025年第5期87-94,共8页
Pure TiO_(2)and copper-modified titania(Cu/TiO_(2))nanoparticles were synthesized through sol gel combined with the pyrolysis method for the removal of Congo red(CR)in wastewater treatment.Surface morphology and struc... Pure TiO_(2)and copper-modified titania(Cu/TiO_(2))nanoparticles were synthesized through sol gel combined with the pyrolysis method for the removal of Congo red(CR)in wastewater treatment.Surface morphology and structural evaluation utilized XRD,TEM,Raman,FTIR and BET techniques.Cu/TiO_(2)showed rich defects and a higher specific surface area than that of TiO_(2).The 1Cu/TiO_(2)(molar ratio Cu/TiO_(2)of 1/100)showed the best performance to adsorption of CR solution at different reaction conditions(contact duration,CR concentration,adsorbent dose,temperature,and initial pH).Adsorption kinetics and equilibrium isotherms were well-described with a pseudo-second-order kinetics and Freundlich model,respectively.The negative ΔG indicates stable adsorption of CR on the Cu/TiO_(2)surface.The adsorption efficiency only decreases by 6%after 5 cycles of adsorption regeneration.The successful synthesis of Cu/TiO_(2)offers a new possibility to address the problems related to CR dye from aqueous solutions. 展开更多
关键词 Cu/TiO_(2)nanoparticles Congo red Adsorption behavior Stability
在线阅读 下载PDF
Promoting stability of sub-3 nm In_(2)S_(3)nanoparticles via sulfur anchoring for CO_(2)electroreduction to formate
3
作者 Fanrong Chen Jiaju Fu +4 位作者 Liang Ding Xiaoying Lu Zhe Jiang Xiaoling Zhang Jin-Song Hu 《Chinese Journal of Catalysis》 2025年第4期138-145,共8页
The p-block metal(In,Sn,Bi,etc.)-based electrocatalysts have exhibited excellent activity in the electrocatalytic CO_(2)reduction(ECR)to formate.However,the rapid decrease in catalytic activity caused by catalyst reco... The p-block metal(In,Sn,Bi,etc.)-based electrocatalysts have exhibited excellent activity in the electrocatalytic CO_(2)reduction(ECR)to formate.However,the rapid decrease in catalytic activity caused by catalyst reconstruction and agglomeration under ECR conditions significantly restricts their practical applications.Herein,we developed a sulfur anchoring strategy to stabilize the high-density sub-3 nm In_(2)S_(3)nanoparticles on sulfur-doped porous carbon substrates(i-In_(2)S_(3)/S-C)for formate production.Systematic characterizations evidenced that the as-prepared catalyst exhibited a strong metal sulfide-support interaction(MSSI),which effectively regulated the electronic states of In_(2)S_(3),achieving a high formate Faradaic efficiency of 91%at−0.95 V vs.RHE.More importantly,the sulfur anchoring effectively immobilized the sub-3 nm In_(2)S_(3)nanoparticles to prevent them from agglomeration.It enabled the catalysts to exhibit much higher durability than the In_(2)S_(3)samples without sulfur anchoring,demonstrating that the strong MSSI and fast charge transfer on the catalytic interface could significantly promote the structural stability of In_(2)S_(3)catalysts.These results provide a viable approach for developing efficient and stable electrocatalysts for CO_(2)reduction. 展开更多
关键词 Electrochemical CO_(2)reduction Strong metal sulfide-support interaction In_(2)S_(3)nanoparticles STABILITY FORMATE
在线阅读 下载PDF
Enhancing Alkaline Hydrogen Evolution Reaction on Ru- Decorated TiO_(2) Nanotube Layers: Synergistic Role of Ti^(3+), Ru Single Atoms, and Ru Nanoparticles
4
作者 Sitaramanjaneya Mouli Thalluri Jhonatan Rodriguez-Pereira +7 位作者 Jan Michalicka Eva Kolíbalová Ludek Hromadko Stanislav Slang Miloslav Pouzar Hanna Sopha Raul Zazpe Jan M.Macak 《Energy & Environmental Materials》 2025年第3期191-198,共8页
Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolu... Synergistic interplays involving multiple active centers originating from TiO2 nanotube layers(TNT)and ruthenium(Ru)species comprising of both single atoms(SAs)and nanoparticles(NPs)augment the alkaline hydrogen evolution reaction(HER)by enhancing Volmer kinetics from rapid water dissociation and improving Tafel kinetics from efficient H*desorption.Atomic layer deposition of Ru with 50 process cycles results in a mixture of Ru SAs and 2.8-0.4 nm NPs present on TNT layers,and it emerges with the highest HER activity among all the electrodes synthesized.A detailed study of the Ti and Ru species using different high-resolution techniques confirmed the presence of Ti^(3+)states and the coexistence of Ru SAs and NPs.With insights from literature,the role of Ti^(3+),appropriate work functions of TNT layers and Ru,and the synergistic effect of Ru SAs and Ru NPs in improving the performance of alkaline HER were elaborated and justified.The aforementioned characteristics led to a remarkable performance by having 9mV onset potentials and 33 mV dec^(-1) of Tafel slopes and a higher turnover frequency of 1.72 H2 s^(-1) at 30 mV.Besides,a notable stability from 28 h staircase chronopotentiometric measurements for TNT@Ru surpasses TNT@Pt in comparison. 展开更多
关键词 alkaline hydrogen evolution reaction ruthenium nanoparticles ruthenium single atoms TiO2 nanotube layers water dissociation
在线阅读 下载PDF
Combing NIR-Ⅱmolecular dye with magnetic nanoparticles for enhanced photothermal theranostics with a 95.6%photothermal conversion efficiency
5
作者 Xiao-Fang Lv Xiao-Yun Ran +7 位作者 Yu Zhao Rui-Rui Zhang Li-Na Zhang Jing Shi Ji-Xuan Xu Qing-Quan Kong Xiao-Qi Yu Kun Li 《Chinese Chemical Letters》 2025年第4期345-350,共6页
Photoheranostics have emerged as a promising tool for cancer theranostics owing to their real-time feedback on treatment and their precise diagnosis.Among them,how to improve the photothermal conversion efficiency(PCE... Photoheranostics have emerged as a promising tool for cancer theranostics owing to their real-time feedback on treatment and their precise diagnosis.Among them,how to improve the photothermal conversion efficiency(PCE)of phototheranostic agents(PTAs)is the key factor for phototheranostic systems.Herein,we provided an efficient method to improve PCE and constructed a biocompatible nano-material ICR-Qu@NH_(2)-Fe_(3)O_(4)@PEG(QNFP)by combing near-infrared second region(NIR-Ⅱ)molecular dye ICR-Qu and amino-modified magnetic nanoparticles and then encapsulated by DSPE-m PEG2000.QNFP exhibited excellent performance for photothermal therapy with a high PCE of 95.6%.Both in vitro and in vivo experiments indicated that QNFP could inhibit the growth of tumors under laser irradiation with low toxicity and realized real-time NIR-Ⅱfiuorescent imaging of tumors.In general,we realized a simple but efficient method to improve the PCE of NIR-Ⅱmolecular dye without reduce its quantum yield,which is an ideal choice for cancer diagnosis and treatment. 展开更多
关键词 Photothermal therapy Magnetic nanoparticles NIR-Ⅱfiuorescence imaging Photothermal conversion efficiency NH_(2)-F_e3O_(4)
原文传递
Release of deposited MnO2 nanoparticles from aqueous surfaces
6
作者 Hainan Wang Ruixing Huang +6 位作者 Chengxue Ma Xiaoling Li Caihong Liu Qiang He Zhengsong Wu Jun Ma Xiaoliu Huangfu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第4期234-243,共10页
Changes in solution chemistry and transport conditions can lead to the release of deposited MnO2 nanoparticles from a solid interface,allowing them to re-enter the aqueous environment.Understanding the release behavio... Changes in solution chemistry and transport conditions can lead to the release of deposited MnO2 nanoparticles from a solid interface,allowing them to re-enter the aqueous environment.Understanding the release behavior of Mn02 nanoparticles from naturally occurring surfaces is critical for better prediction of the transport potential and environmental fate of Mn02 nanoparticles.In this study,the release of Mn02 nanoparticles was investigated using a quartz crystal microbalance with dissipation monitoring(QCM-D),and different environmental surface types,solution pH values and representative macromolecular organics were considered.Mn02 nanoparticles were first deposited on crystal sensors at elevated NaN03 concentrations before being rinsed with double-deionized water to induce their remobilization.The results reveal that the release rate of Mn02 depends on the surface type,in the decreasing order:SiO2>Fe304>Al2 O3,resulting from electrostatic interactions between the surface and particles.Moreover,differences in solution pH can lead to variance in the release behavior of Mn02 nanoparticles.The release rate from surfaces was significantly higher at pH 9.8 that at 4.5,indicating that alkaline conditions were more favorable for the mobilization of Mn02 in the aquatic environment.In the presence of macromolecular organics,bovine serum albumin(BSA)can inhibit the release of Mn02 from the surfaces due to attractive forces.In presence of humic acid(HA)and sodium alginate(SA),the Mn02 nanoparticles were more likely to be mobile,which may be associated with a large repulsive barrier imparted by steric effects. 展开更多
关键词 QCM-D Release kinetics mno2 nanoparticles(mno2 NPs) Solution pH BIOMACROMOLECULE
原文传递
Effects of in-situZrB_2 nanoparticles and scandium on microstructure and mechanical property of 7N01 aluminum alloy 被引量:2
7
作者 Xizhou Kai Yuhui Wang +8 位作者 Ruikun Chen Yanjie Peng Anjun Shi Ran Tao Xiangfeng Liang Guirong Li Gang Chen Xiaojing Xu Yutao Zhao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第3期612-620,I0007,共10页
In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoi... In this study, the in-situ synthesized ZrB_(2) nanoparticles and rare earth Sc were introduced to enhance the strength and ductility of 7N01 aluminum alloy, via the generation of high-melting and uniform nanodispersoids. The microstructure and mechanical property evolution of the prepared composites and the interaction between ZrB_(2) and Sc were studied in detail. The microstructure investigation shows that the introduction of rare earth scandium(Sc) can promote the distribution of ZrB_(2) nanoparticles, by improving their wettability to the Al melt. Meanwhile, the addition of rare earth Sc also modifies the coarse Al Zn Mg Mn Fe precipitated phases, refines the matrix grains and generates high-melting Al_3(Sc,Zr)/Al_3Sc nanodispersoids. Tensile tests of the composites show that with the combinatorial introduction of ZrB_(2) and Sc, the strength and ductility of the composites are improved simultaneously compared with the corresponding 7N01 alloy, ZrB_(2) /7N01 composite and Sc/7N01 alloy. And the optimum contents of ZrB_(2) and Sc are 3 wt% and 0.2 wt% in this study. The yield strength, ultimate strength and elongation of(3 wt% ZrB_(2) +0.2 wt% Sc)/7N01 composite are 477 MPa, 506 MPa and 9.8%, increased about 18.1%, 12.2%and 38% compared to 7N01 alloy. Furthermore, the cooperation strengthening mechanisms of ZrB_(2) and Sc are also discussed. 展开更多
关键词 7N01 aluminum alloy In-situ ZrB_(2)nanoparticles Rare earth Sc Microstructure Mechanical property Mechanism
原文传递
Effect of TiB_(2) Nanoparticles on Microstructure and Mechanical Properties of Ni_(60)Cr_(21)Fe_(19) Alloy in Rapid Directional Solidification Process:Molecular Dynamics Study 被引量:1
8
作者 WANG Jin JIANG Wugui HU Chenxi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期575-588,共14页
Molecular dynamics(MD)simulations are employed to delve into the multifaceted effects of TiB_(2) nanoparticles on the intricate grain refinement mechanism,microstructural evolution,and tensile performance of Inconel 7... Molecular dynamics(MD)simulations are employed to delve into the multifaceted effects of TiB_(2) nanoparticles on the intricate grain refinement mechanism,microstructural evolution,and tensile performance of Inconel 718 superalloys during the rapid directional solidification.Specifically,the study focuses on elucidating the role of TiB2 nanoparticles in augmenting the nucleation rate during the rapid directional solidification process of Ni_(60)Cr_(21)Fe_(19) alloy system.Furthermore,subsequent tensile simulations are conducted to comprehensively evaluate the anisotropic behavior of tensile properties within the solidified microstructures.The MD results reveal that the incorporation of TiB₂nanoparticles during the rapid directional solidification of the Ni_(60)Cr_(21)Fe_(19) significantly enhances the average nucleation rate,escalating it from 1.27×10^(34)m^(-3)·s^(-1)to 2.55×10^(34)m^(-3)·s^(-1).Notably,within the face centered cube(FCC)structure,Ni atoms exhibit pronounced compositional segregation,and the solidified alloy maintains an exceptionally high dislocation density reaching up to 10^(16)m^(-2).Crucially,the rapid directional solidification process imparts a distinct microstructural anisotropy,leading to a notable disparity in tensile strength.Specifically,the tensile strength along the solidification direction is markedly superior to that perpendicular to it.This disparity arises from different deformation mechanisms under varying loading orientations.Tensile stress perpendicular to the solidification direction encourages the formation of smooth and organized mechanical twins.These twins act as slip planes,enhancing dislocation mobility and thereby improving stress relaxation and dispersion.Moreover,the results underscore the profound strengthening effect of TiB_(2) nanoparticles,particularly in enhancing the tensile strength along the rapid directional solidification direction. 展开更多
关键词 TiB_(2) nanoparticle rapid directional solidification microstructure evolution molecular dynamics
在线阅读 下载PDF
Experimental investigation of the effects of oil asphaltene content on CO_(2) foam stability in the presence of nanoparticles and sodium dodecyl sulfate 被引量:1
9
作者 SADEGHI Hossein KHAZ'ALI Ali Reza MOHAMMADI Mohsen 《Petroleum Exploration and Development》 SCIE 2024年第1期239-250,共12页
Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechani... Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability. 展开更多
关键词 CO_(2)foam foam stability ASPHALTENE silica nanoparticle sodium dodecyl sulfate(SDS) repulsive forces surface charges Zeta potential
在线阅读 下载PDF
Porous silica nano-flowers stabilized Pt-Pd bimetallic nanoparticles as heterogeneous catalyst for efficiently synthesizing guaiacol from 2-methoxycyclohexanol
10
作者 Junbo Feng Junyan Wu +1 位作者 Dongdong Yan Yadong Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期222-233,共12页
Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reduc... Porous silica nano-flowers(KCC-1)immobilized Pt-Pd alloy NPs(Pt-Pd/KCC-1)with different mass ratios of Pd and Pt were successfully prepared by a facile in situ one-step reduction,using hydrazinium hydroxide as a reducing agent.The as-synthesized silica nanospheres possess radial fibers with a distance of 15 nm,exhibiting a high specific surface area(443.56 m^(2)·g^(-1)).Meanwhile,the obtained Pt-Pd alloy NPs are uniformly dispersed on the silica surface with a metallic particle size of 4-6 nm,which exist as metallic Pd and Pt on the surface of monodisperse KCC-1,showing the transfer of electrons from Pd to Pt.The as-synthesized 2.5%Pt-2.5%Pd/KCC-1 exhibited excellent catalytic activity and stability for the continuous dehydrogenation of 2-methoxycyclohexanol to prepare guaiacol.Compared with Pt or Pd single metal supported catalysts,the obtained 2.5%Pt-2.5%Pd/KCC-1 shows 97.2%conversion rate of 2-methoxycyclohexanol and 76.8%selectivity for guaiacol,which attributed to the significant synergistic effect of bimetallic Pt-Pd alloy NPs.Furthermore,turn over frequency value of the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs achieved 4.36 s^(-1),showing higher catalytic efficiency than other two monometallic catalysts.Reaction pathways of dehydro-aromatization of 2-methoxycyclohexanol over the obtained catalyst are proposed.Consequently,the obtained 2.5%Pt-2.5%Pd/KCC-1 NPs prove their potential in the dehydrogenation of 2-methoxycyclohexanol,while the kinetics and mechanistic study of the dehydrogenation reaction over the catalyst in a continuous fixed-bed reactor may provide valuable information for the development of green,outstanding and powerful synthetic pathway of guaiacol. 展开更多
关键词 Supported catalyst nanoparticles Dehydrogenation 2-Methoxycyclohexanol GUAIACOL
在线阅读 下载PDF
Effect of Mo and ZrO_(2)nanoparticles addition on interfacial properties and shear strength of Sn58Bi/Cu solder joint
11
作者 Amares SINGH Hui Leng CHOO +1 位作者 Wei Hong TAN Rajkumar DURAIRAJ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2619-2628,共10页
The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(... The influence of Mo and ZrO_(2)nanoparticles addition on the interfacial properties and shear strength of Sn58Bi solder joint was investigated.The interfacial microstructures of Sn58Bi/Cu,Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints were analysed using a scanning electron microscope(SEM)coupled with energy dispersive X-ray(EDX)and the X-ray diffraction(XRD).Intermetallic compounds(IMCs)of MoSn_(2)are detected in the Sn58Bi+Mo/Cu solder joint,while SnZr,Zr_(5)Sn_(3),ZrCu and ZrSn_(2)are detected in Sn58Bi+ZrO_(2)/Cu solder joint.IMC layers for both composite solders comprise of Cu_(6)Sn_(5) and Cu_(3)Sn.The SEM images of these layers were used to measure the IMC layer’s thickness.The average IMC layer’s thickness is 1.4431μm for Sn58Bi+Mo/Cu and 0.9112μm for Sn58Bi+ZrO_(2)/Cu solder joints.Shear strength of the solder joints was investigated via the single shear lap test method.The average maximum load and shear stress of the Sn58Bi+Mo/Cu and Sn58Bi+ZrO_(2)/Cu solder joints are increased by 33%and 69%,respectively,as compared to those of the Sn58Bi/Cu solder joint.By comparing both composite solder joints,the latter prevails better as adding smaller sized ZrO_(2)nanoparticles improves the interfacial properties granting a stronger solder joint. 展开更多
关键词 lead-free solder interfacial microstructure IMC layer thickness shear strength dislocation density ZrO_(2)nanoparticles Mo nanoparticles
在线阅读 下载PDF
Merging non-covalent and covalent crosslinking:En route to single chain nanoparticles
12
作者 Yifei Zhang Yuncong Xue +3 位作者 Laiwei Gao Rui Liao Feng Wang Fei Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第6期307-311,共5页
Single-chain nanoparticles represent an emerging class of nanomaterials designed to mimic protein's folding paradigm.Intrachain covalent crosslinking toward the formation of single-chain nanoparticles encounters c... Single-chain nanoparticles represent an emerging class of nanomaterials designed to mimic protein's folding paradigm.Intrachain covalent crosslinking toward the formation of single-chain nanoparticles encounters complex energy landscapes,leading to the potential occurrence of misfolding issues.While noncovalent crosslinking can circumvent this issue,the resulting single-chain nanoparticles exhibit lower structural stability compared to their covalently crosslinked counterparts.In this study,we present a novel approach for the synthesis of single-chain nanoparticles,achieved through the combination of non-covalent and covalent intramolecular crosslinking.Cyanostilbenes grafted onto the linear polymer form intrachain non-covalent stacks aided by hydrogen bonds,leading to the formation of non-covalently crosslinked single-chain nanoparticles.These nanoparticles undergo conversion to covalently crosslinked nanostructures through subsequent photo-irradiation using[2+2]photocycloaddition,a process facilitated by the supramolecular confinement effect.Consequently,the resulting single-chain nanoparticles demonstrate both intrachain folding efficiency and substantial stability,offering significant potential for advancing applications across diverse fields. 展开更多
关键词 Single chain nanoparticles Intrachain folding Supramolecular confinement Cyanostilbenes [2+2]photocycloaddition
原文传递
Synthesis of Cerium Doped Zirconium-Based Metal-Organic Framework Nanoparticles and Their Photocatalytic Performance for Carbon Dioxide Cycloaddition
13
作者 Zhao Yingzhe Zhang Zixuan +4 位作者 Zhang Jianling Zhang Renjie Li Meiling Teng Yunan Wang Haoxiang 《有机化学》 SCIE CAS CSCD 北大核心 2024年第10期3169-3177,共9页
Cerium-doped zirconium-based NH_(2)-UiO-66 nanoparticles were synthesized in ionic liquid 1-butyl-3-methylimidazolium acetate at room temperature.The crystal structure and morphology were studied using X-ray diffracti... Cerium-doped zirconium-based NH_(2)-UiO-66 nanoparticles were synthesized in ionic liquid 1-butyl-3-methylimidazolium acetate at room temperature.The crystal structure and morphology were studied using X-ray diffraction,infrared spectroscopy,scanning electron microscopy and transmission electron microscopy.The valence state and distribution of elements in the obtained materials were examined using X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy.Catalytic performance studies show that the cerium-doped NH_(2)-UiO-66 exhibits improved catalytic efficiency in the cycloaddition reaction of 1,2-butylene oxide and carbon dioxide than pure NH_(2)-UiO-66.Studies on the photoelectric properties indicate that the cerium-doped NH_(2)-UiO-66 catalyst possesses strong photocurrent response,low interfacial charge transfer resistance,narrow band gap,and low flat band potential.This work provides a new approach of synthesizing high-performance catalyst for photocatalytic CO_(2) cycloaddition. 展开更多
关键词 metal-organic framework BIMETALLIC NANOPARTICLE ionic liquid CO_(2)cycloaddition
原文传递
Graphdiyne scaffold anchored highly dispersed ruthenium nanoparticles as an efficient cathode catalyst for rechargeable Li-CO_(2) battery
14
作者 Yiru Ma Huiqi Qu +8 位作者 Wenna Wang Ziyang Guo Yueqin Yu Feng Liu Bin Yu Minge Tian Zhenjiang Li Bin Li Lei Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第1期552-557,共6页
Lithium (Li)-CO_(2) battery is rising as an attractive energy-storage system with the competence of CO_(2) conversion/fixation. However, its practical development is seriously hindered by the high overpotential. Herei... Lithium (Li)-CO_(2) battery is rising as an attractive energy-storage system with the competence of CO_(2) conversion/fixation. However, its practical development is seriously hindered by the high overpotential. Herein, a rational design on a highly catalytic Li-CO_(2) battery electrode built by graphdiyne powder as a multi-functional laminar scaffold with anchored highly dispersed Ru nanoparticles is explored. The strong interaction between the abundant acetylenic bond sites of graphdiyne scaffold and Ru nanoparticles can effectively promote the electrochemical progress and reduce the voltage polarization. The unique channels architecture of the cathodic catalyst with enough space not only accelerates CO_(2) diffusion and electrons/Li+ transport, but also allows a large amount of accommodation for discharged product (Li2CO3) to assure an advanced capacity. The corresponding Li-CO_(2) battery displays an advanced discharged capacity of 15,030 mAh/g at 500 mA/g, great capacity retention of 8873 mAh/g at 2 A/g, high coulombic efficiency of 97.6% at 500 mA/g and superior life span for 120 cycles with voltage gap of 1.67 V under a restricted capacity of 1000 mAh/g at 500 mA/g. Ex/in-situ studies prove that synergy between Ru nanoparticles and acetylene bonds of GDY can boost the round-trip CO_(2)RR and CO_(2)ER kinetics. 展开更多
关键词 NANOPORES Li-CO_(2)battery Anchored Ru nanoparticles Graphdiyne Synergistic effect
原文传递
Selective CO_(2)Electroreduction to Multi-Carbon Products on Organic-Functionalized CuO Nanoparticles by Local Micro-Environment Modulation
15
作者 Shan Ren Xi Cao +5 位作者 Qikui Fan Zhimao Yang Fei Wang Xin Wang Licheng Bai Jian Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期120-132,共13页
Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO_(2)reduction reaction(CO_(2)RR)toward multi-carbon(C2+)products,primarily by suppressing the pa... Surface functionalization of Cu-based catalysts has demonstrated promising potential for enhancing the electrochemical CO_(2)reduction reaction(CO_(2)RR)toward multi-carbon(C2+)products,primarily by suppressing the parasitic hydrogen evolution reaction and facilitating a localized CO_(2)/CO concentration at the electrode.Building upon this approach,we developed surface-functionalized catalysts with exceptional activity and selectivity for electrocatalytic CO_(2)RR to C_(2+)in a neutral electrolyte.Employing CuO nanoparticles coated with hexaethynylbenzene organic molecules(HEB-CuO NPs),a remarkable C_(2+)Faradaic efficiency of nearly 90%was achieved at an unprecedented current density of 300 mA cm^(-2),and a high FE(>80%)was maintained at a wide range of current densities(100-600 mA cm^(-2))in neutral environments using a flow cell.Furthermore,in a membrane electrode assembly(MEA)electrolyzer,86.14%FEC2+was achieved at a partial current density of 387.6 mA cm^(-2)while maintaining continuous operation for over 50 h at a current density of 200 mA cm^(-2).In-situ spectroscopy studies and molecular dynamics simulations reveal that reducing the coverage of coordinated K⋅H2O water increased the probability of intermediate reactants(CO)interacting with the surface,thereby promoting efficient C-C coupling and enhancing the yield of C_(2+)products.This advancement offers significant potential for optimizing local micro-environments for sustainable and highly efficient C_(2+)production. 展开更多
关键词 CO_(2)electroreduction to C_(2+) Neutral electrolyte Organic-functionalized CuO nanoparticles Local micro-environment
在线阅读 下载PDF
Regulating the electronic structure of Ir single atoms by ZrO_(2)nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature
16
作者 Shiqi Peng Yongfang Rao +4 位作者 Tan Li Yufei Zhang Jun-ji Cao Shuncheng Lee Yu Huang 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期200-205,共6页
Developing low-loading single-atom catalysts with superior catalytic activity and selectivity in formaldehyde(HCHO)oxidation at room temperature remains challenging.Herein,ZrO_(2)nanoparticles coupled low-loading Ir s... Developing low-loading single-atom catalysts with superior catalytic activity and selectivity in formaldehyde(HCHO)oxidation at room temperature remains challenging.Herein,ZrO_(2)nanoparticles coupled low-loading Ir single atoms in N-doped carbon(Ir_(1)-N-C/ZrO_(2))was prepared.The optimal Ir_(1)-N-C/ZrO_(2)with 0.25 wt%Ir loading delivers the high HCHO removal and conversion efficiency(>95%)at 20℃,which is higher than that over Ir_(1)-N-C with the same Ir loading.The specific rate can reach 1285.6 mmol gIr^(-1)h^(-1),surpassing the Ir based catalysts reported to date.Density functional theory calculation results and electron spin resonance spectra indicate that the introduction of Zr O_(2)nanoparticles modulate the electronic structure of the Ir single atoms,promoting O_(2)activation to·O_(2)^(–).Moreover,the Ir-C-Zr channel is favorable for the dissociation of·O_(2)^(–)to active oxygen atom(*O),and further accelerates the transformation of HCHO and intermediates(dioxymethylene and formates)to CO_(2)and H_(2)O.This work provides a facile strategy to design low-loading single-atom catalysts with high catalytic activity toward HCHO oxidation. 展开更多
关键词 ZrO_(2)nanoparticles Ir single atoms Electronic structure FORMALDEHYDE Catalytic oxidation
原文传递
Al_(2)O_(3) nanoparticles as surface modifier enables deposition of high quality perovskite films for ultra-flexible photovoltaics 被引量:1
17
作者 Zhiyong Wang Qingshun Dong +12 位作者 Ying Yan Zikeng Fang Guojun Mi Mingzhu Pei Shuhong Wang Linghui Zhang Jing Liu Min Chen Hongru Ma Ruiting Wang Jie Zhang Chun Cheng Yantao Shi 《Advanced Powder Materials》 2024年第1期40-48,共9页
Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuousl... Advanced photovoltaics,such as ultra-flexible perovskite solar cells(UF-PSCs),which are known for their lightweight design and high power-to-mass ratio,have been a long-standing goal that we,as humans,have continuously pursued.Unlike normal PSCs fabricated on rigid substrates,producing high-efficiency UF-PSCs remains a challenge due to the difficulty in achieving full coverage and minimizing defects of metal halide perovskite(MHP)films.In this study,we utilized Al_(2)O_(3) nanoparticles(NPs)as an inorganic surface modifier to enhance the wettability and reduce the roughness of poly-bis(4-phenyl)(2,4,6-trimethylphenyl)amine simultaneously.This approach proves essentials in fabricating UF-PSCs,enabling the deposition of uniform and dense MHP films with full coverage and fewer defects.We systematically investigated the effect of Al_(2)O_(3) NPs on film formation,combining simulation with experiments.Our strategy not only significantly increases the power conversion efficiency(PCE)from 11.96%to 16.33%,but also promotes reproducibility by effectively addressing the short circuit issue commonly encountered in UF-PSCs.Additionally,our UF-PSCs demonstrates good mechanical stability,maintaining 98.6%and 79.0%of their initial PCEs after 10,000 bending cycles with radii of 1.0 and 0.5 mm,respectively. 展开更多
关键词 Ultra-flexible Perovskite solar cell Surface modify Al_(2)O_(3)nanoparticles WETTABILITY
在线阅读 下载PDF
Active Cu and Fe Nanoparticles Codecorated Ruddlesden-Popper-Type Perovskite as Solid Oxide Electrolysis Cells Cathode for CO_(2)Splitting
18
作者 Dongliang Liu Hang Shang +9 位作者 Chuan Zhou Jie Miao Daxiang Xue Zeping Chen Meijuan Fei Fengli Liang Qiang Niu Ran Ran Wei Zhou Zongping Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期215-223,共9页
Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode ... Solid oxide electrolysis cells(SOECs),displaying high current density and energy efficiency,have been proven to be an effective technique to electrochemically reduce CO_(2)into CO.However,the insufficiency of cathode activity and stability is a tricky problem to be addressed for SOECs.Hence,it is urgent to develop suitable cathode materials with excellent catalytic activity and stability for further practical application of SOECs.Herein,a reduced perovskite oxide,Pr_(0.35)Sr_(0.6)Fe_(0.7)Cu_(0.2)Mo_(0.1)O_(3-δ)(PSFCM0.35),is developed as SOECs cathode to electrolyze CO_(2).After reduction in 10%H_(2)/Ar,Cu and Fe nanoparticles are exsolved from the PSFCM0.35 lattice,resulting in a phase transformation from cubic perovskite to Ruddlesden-Popper(RP)perovskite with more oxygen vacancies.The exsolved metal nanoparticles are tightly attached to the perovskite substrate and afford more active sites to accelerate CO_(2)adsorption and dissociation on the cathode surface.The significantly strengthened CO_(2)adsorption capacity obtained after reduction is demonstrated by in situ Fourier transform-infrared(FT-IR)spectra.Symmetric cells with the reduced PSFCM0.35(R-PSFCM0.35)electrode exhibit a low polarization resistance of 0.43Ωcm^(2)at 850℃.Single electrolysis cells with the R-PSFCM0.35 cathode display an outstanding current density of 2947 mA cm^(-2)at 850℃and 1.6 V.In addition,the catalytic stability of the R-PSFCM0.35 cathode is also proved by operating at 800℃with an applied constant current density of 600 mA cm^(-2)for 100 h. 展开更多
关键词 CATHODE CO_(2)reduction nanoparticles decoration solid oxide electrolysis cells
在线阅读 下载PDF
Electron-enriched single-Pd-sites on g-C_(3)N_(4) nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO_(2) photoreduction 被引量:1
19
作者 Lei Li Xinyan Dai +6 位作者 Meichi Lu Changfa Guo Saikh Mohammad Wabaidur Xi-Lin Wu Zhangrong Lou Yijun Zhong Yong Hu 《Advanced Powder Materials》 2024年第2期47-56,共10页
Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical... Modulating electronic structures of single-atom metal cocatalysts is vital for highly active photoreduction of CO_(2),and it's especially challenging to develop a facile method to modify the dispersion of atomical photocatalytic sites.We herein report an ion-loading pyrolysis route to in-situ anchor Pd single atoms as well as twinned Pd nanoparticles on ultra-thin graphitic carbon nitride nanosheets(PdTP/Pd_(SA)-CN)for high-efficiency photoreduction of CO_(2).The anchored Pd twinned nanoparticles donate electrons to adjacent single Pd–N_(4) sites through the carbon nitride networks,and the optimized PdTP/Pd_(SA)-CN photocatalyst exhibits a CO evolution rate up to 46.5μmol g^(-1) h^(-1) with nearly 100%selectivity.As revealed by spectroscopic and theoretical analyses,the superior photocatalytic activity is attributed to the lowered desorption barrier of carbonyl species at electron-enriched Pd single atoms,together with the improved efficiencies of light-harvesting and charge separation/transport.This work has demonstrated the engineering of the electron density of single active sites with twinned metal nanoparticles assisted by strong electronic interaction with the support of the atomic metal,and unveiled the underlying mechanism for expedited photocatalytic efficiency. 展开更多
关键词 Pd single atom Twinned Pd nanoparticle Graphitic carbon nitride Electronic metal-support interaction CO_(2)photoreduction
在线阅读 下载PDF
Improvement of the piezoelectricity of PVDF-HFP by CoFe_(2)O_(4)nanoparticles
20
作者 Dan Lei Ning Hu +5 位作者 Liangke Wu Alamusi Huiming Ning Yang Wang Zhaonan Jin Yaolu Liu 《Nano Materials Science》 EI CAS CSCD 2024年第2期201-210,共10页
High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)and ferromagnetic cobalt ferrite(CoFe_(2)O_(4))(0.00 wt%to 0.2 wt%)are prepared by a solution casting method acc... High piezoelectric composite films composed of poly(vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP)and ferromagnetic cobalt ferrite(CoFe_(2)O_(4))(0.00 wt%to 0.2 wt%)are prepared by a solution casting method accompanied by uniaxial stretching and high electric field poling.The decisive effect of the poling electric field on the power generating capability was confirmed by the experiments.For pure PVDF-HFP films,when the maximum electric field Emax is 120 MV/m,the calibrated open circuit voltage reaches 2.93 V,which is much higher than those poled at lower electric fields(70 MV/m:1.41 V;90 MV/m:2.11 V).Furthermore,the addition of CoFe_(2)O_(4)also influences the piezoelectricity dramatically.In the samples containing 0.15 wt%CoFe_(2)O_(4),the calibrated open circuit voltage increases to the maximum value of 3.57 V.Meanwhile,the relative fraction of theβ-phase and the crystallinity degree are 99%and 48%,respectively.The effects of CoFe_(2)O_(4)nanoparticles on initial crystallization,uniaxial stretching and high electric field poling are investigated by XRD,FTIR and DSC. 展开更多
关键词 PVDF-HFP CoFe_(2)O_(4)nanoparticles PIEZOELECTRICITY NANOCOMPOSITE
在线阅读 下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部