Size characterization of silver nanoparticles with biomolecule corona(AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of Ag NPs. He...Size characterization of silver nanoparticles with biomolecule corona(AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of Ag NPs. Herein, we report a versatile method that allows simultaneous determination of the size of AgNP@BCs and mass concentration of various silver species in rat liver. Both particulate and ionic silver were extracted in their original forms from the organs by alkaline digestion, and analyzed by size exclusion chromatography combined with inductively coupled plasma mass spectrometry(SEC-ICP-MS). While the silver mass concentrations were quantified by ICP-MS with a detection limit of 0.1 μg/g, the effective diameter of AgNP@BCs was determined based on the retention time in SEC separation with size discrimination of 0.6-3.3 nm. More importantly, we found that the BC thickness of AgNP@BCs is core size independent, and a linear correlation was found between the effective diameter and core diameter of AgNP@BCs in extracted tissues, which was used to calibrate the core diameter with standard deviations in the range of 0.2-1.1 nm. The utility of this strategy was demonstrated through application to rat livers in vivo. Our method is powerful for investigating the transformation mechanism of Ag NPs in vivo.展开更多
Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable th...Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable than physical,chemical,and mechanical methods.The wet biomass of Aspergillus terreus(A.terreus) was utilized for the intracellular synthesis of gold nanoparticles.Gold nanoparticles were produced when an aqueous solution of chloroauric acid was reduced by A.terreus biomass as the reducing agent.Production of gold nanoparticles was confirmed by the color change of biomass from yellow to pinkish violet.The produced nanoparticles were then characterized by FT-IR,SEM,EDS,and XRD.The SEM images revealed that the nanoparticles were spherical,irregularly shaped with no definite morphology.Average size of the biosynthesized gold nanoparticles was 186 nm.The presence of the gold nanoparticle was confirmed by EDS analysis.Crystalline nature of synthesized gold nanoparticle was confirmed by XRD pattern.展开更多
Three types of nanoparticles and their combinations were blended into a fine powder, which has been used in the powder coating industry. To study their effects on flow properties, the modified powder samples were char...Three types of nanoparticles and their combinations were blended into a fine powder, which has been used in the powder coating industry. To study their effects on flow properties, the modified powder samples were characterized using a variety of techniques that tested the powder under different powder states ranging from dynamic to static. It was found that all three nanoparticles improved the flow properties of the powder to some degree, though the amounts of the nanoparticles needed were different depending on their physical properties. Secondly, inconsistency among these powder characterization techniques was also found. This is attributed to the different states of the powder samples during a measurement including dynamic, dynamic-static and static states. It was confirmed that characterization techniques which test the flow properties of a powder under all three states are needed to fully describe the flow properties of the powder. Finally, the effects of combinations of nanoparticles were explored, and it was found that combinations of nanoparticles can intensify, weaken or combine the effects of their component nanoparticles. The effects of nanoparticle combinations are not a simple summation of the effects of their comnonent nanoparticles.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFA0203102)the National Natural Science Foundation of China(Nos.21337004,21620102008)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB14020101)
文摘Size characterization of silver nanoparticles with biomolecule corona(AgNP@BCs) and mass quantification of various silver species in organisms are essential for understanding the in vivo transformation of Ag NPs. Herein, we report a versatile method that allows simultaneous determination of the size of AgNP@BCs and mass concentration of various silver species in rat liver. Both particulate and ionic silver were extracted in their original forms from the organs by alkaline digestion, and analyzed by size exclusion chromatography combined with inductively coupled plasma mass spectrometry(SEC-ICP-MS). While the silver mass concentrations were quantified by ICP-MS with a detection limit of 0.1 μg/g, the effective diameter of AgNP@BCs was determined based on the retention time in SEC separation with size discrimination of 0.6-3.3 nm. More importantly, we found that the BC thickness of AgNP@BCs is core size independent, and a linear correlation was found between the effective diameter and core diameter of AgNP@BCs in extracted tissues, which was used to calibrate the core diameter with standard deviations in the range of 0.2-1.1 nm. The utility of this strategy was demonstrated through application to rat livers in vivo. Our method is powerful for investigating the transformation mechanism of Ag NPs in vivo.
文摘Greener synthesis of nanoparticle is a revolutionizing area in research field.Biological method of reduction of metal ions is often preferred because they are clean,safe,biocompatible,and environmentally acceptable than physical,chemical,and mechanical methods.The wet biomass of Aspergillus terreus(A.terreus) was utilized for the intracellular synthesis of gold nanoparticles.Gold nanoparticles were produced when an aqueous solution of chloroauric acid was reduced by A.terreus biomass as the reducing agent.Production of gold nanoparticles was confirmed by the color change of biomass from yellow to pinkish violet.The produced nanoparticles were then characterized by FT-IR,SEM,EDS,and XRD.The SEM images revealed that the nanoparticles were spherical,irregularly shaped with no definite morphology.Average size of the biosynthesized gold nanoparticles was 186 nm.The presence of the gold nanoparticle was confirmed by EDS analysis.Crystalline nature of synthesized gold nanoparticle was confirmed by XRD pattern.
文摘Three types of nanoparticles and their combinations were blended into a fine powder, which has been used in the powder coating industry. To study their effects on flow properties, the modified powder samples were characterized using a variety of techniques that tested the powder under different powder states ranging from dynamic to static. It was found that all three nanoparticles improved the flow properties of the powder to some degree, though the amounts of the nanoparticles needed were different depending on their physical properties. Secondly, inconsistency among these powder characterization techniques was also found. This is attributed to the different states of the powder samples during a measurement including dynamic, dynamic-static and static states. It was confirmed that characterization techniques which test the flow properties of a powder under all three states are needed to fully describe the flow properties of the powder. Finally, the effects of combinations of nanoparticles were explored, and it was found that combinations of nanoparticles can intensify, weaken or combine the effects of their component nanoparticles. The effects of nanoparticle combinations are not a simple summation of the effects of their comnonent nanoparticles.