Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint str...Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.展开更多
Lead-free ferroelectric K_(0.5)Na_(0.5)NbO_(3)(KNN)films with different thicknesses were prepared by polyvinlypyrrolidone(PVP)-modified chemical solution deposition(CSD)method.Their residual stresses were studied with...Lead-free ferroelectric K_(0.5)Na_(0.5)NbO_(3)(KNN)films with different thicknesses were prepared by polyvinlypyrrolidone(PVP)-modified chemical solution deposition(CSD)method.Their residual stresses were studied with two methods of X-ray diffraction(XRD)and nanoindentation fracture.It was found that the tensile stress occurs in KNN films with small thickness of 1.3μm after all kinds of stresses were neutralized,which is mainly originated from the interaction across grain boundaries.With increasing the thickness to 2.5μm and above it,the residual stress changed from tensile stresses to compressive stresses,and the compressive stress decreased with the thickness increased.These results could explain why a thicker KNN film can show improved electrical properties and the larger the thickness,the better the ferroelectric and piezoelectric properties.展开更多
基金The project is supported by Postdoctoral Science Fund of China and Postdoctoral Fund of Heilongjiang Province.
文摘Nanoindentation method was adopted to investigate the distribution regularities of micro-mechanical properties of 2219 twin wire welded joints, thus providing the necessary theoretical basis and guidance for joint strengthening and improvement of welding procedure. Experimental results show that in weld zone, micro-mechanical properties are seriously uneven. Both hardness and elastic modulus distribute as uneven sandwich layers, while micro-mechanical properties in bond area are much more uniform than weld zone;In heat-affected zone of 2219 twin wire welded joint, distribution regularity of hardness is similar to elastic modulus. The average hardness in quenching zone is higher than softening zone, and the average elastic modulus in solid solution zone is slightly higher than softening zone. As far as the whole welded joint is concerned, metal in weld possesses the lowest hardness. For welded specimens without reinforcement, fracture position is the weld when tensioning. While for welded specimens with reinforcement, bond area is the poorest position with joint strength coefficient of 61%. So, it is necessary to strengthen the poor positions--weld and bond area of 2219 twin wire welded joint in order to solve joint weakening of welding this kind of alloy.
基金the support from the Natural Science Foundation of China(Grant No.90923001)the International Science and Technology Cooperation Program of China(Grant Nos.2010DFB13640 and 2011DFA51880)+2 种基金the Shaanxi Province International Collaboration Program(Grant Nos.2009KW-12 and 2010KW-09)the Fundamental Research Funds for the Central Universities(Grant No.0105-08143078)supported by the research grant,SERC of A*STAR(Agency for Science,Technology and Research),Singapore(No.0921150112)。
文摘Lead-free ferroelectric K_(0.5)Na_(0.5)NbO_(3)(KNN)films with different thicknesses were prepared by polyvinlypyrrolidone(PVP)-modified chemical solution deposition(CSD)method.Their residual stresses were studied with two methods of X-ray diffraction(XRD)and nanoindentation fracture.It was found that the tensile stress occurs in KNN films with small thickness of 1.3μm after all kinds of stresses were neutralized,which is mainly originated from the interaction across grain boundaries.With increasing the thickness to 2.5μm and above it,the residual stress changed from tensile stresses to compressive stresses,and the compressive stress decreased with the thickness increased.These results could explain why a thicker KNN film can show improved electrical properties and the larger the thickness,the better the ferroelectric and piezoelectric properties.