Transport properties of nanofluids are extensively studied last decade. This has been motivated by the use of nanosized systems in various applications. The viscosity of nanofluids is of great significance as the appl...Transport properties of nanofluids are extensively studied last decade. This has been motivated by the use of nanosized systems in various applications. The viscosity of nanofluids is of great significance as the application of nanofluids is always associated with their flow. However, despite the fairly large amount of available experimental information, there is a lack of systematic data on this issue and experimental results are often contradictory. The purpose of this review is to identify the typical parameters determining the viscosity of nanofluids. The dependence of the nanofluid viscosity on the particles concentration, their size and temperature is analyzed. It is explained why the viscosity of nanofluid does not described by the classical theories. It was shown that size of nanoparticles is the key characteristics of nanofluids. In addition the nanofluid is more structural liquid than the base one.展开更多
The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a n...The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids.展开更多
This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to d...This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.展开更多
The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods t...The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods to address the cooling challenge for high-power devices in DCs.Hybrid nanofluid(HNF)has the advantages of high thermal conductivity and good rheological properties.This study summarizes the numerical investigations of HNFs in mini/micro heat sinks,including the numerical methods,hydrothermal characteristics,and enhanced heat transfer technologies.The innovations of this paper include:(1)the characteristics,applicable conditions,and scenarios of each theoretical method and numerical method are clarified;(2)the molecular dynamics(MD)simulation can reveal the synergy effect,micro motion,and agglomeration morphology of different nanoparticles.Machine learning(ML)presents a feasiblemethod for parameter prediction,which provides the opportunity for the intelligent regulation of the thermal performance of HNFs;(3)the HNFs flowboiling and the synergy of passive and active technologies may further improve the overall efficiency of liquid cooling systems in DCs.This review provides valuable insights and references for exploring the multi-phase flow and heat transport mechanisms of HNFs,and promoting the practical application of HNFs in chip-level liquid cooling in DCs.展开更多
This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Div...This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Diverse volume fractions(1%, 2%, and 3%) of Al_(2)O_(3)-water nanofluids are meticulously prepared and analyzed. The essential physical properties of these nanofluids, critical for evaluating their thermal and flow characteristics, have been comprehensively assessed. From a quantitative perspective, numerical simulations are employed to predict the Nusselt number(Nu) and friction factor(f). The empirical findings reveal intriguing trends: the friction factor experiences an upward trend with diminishing velocity, attributed to heightened molecular cohesion. Conversely, the friction factor demonstrates a decline with diminishing volume fractions, a consequence of reduced particle size. Both the nanofluid's viscosity and heat transfer coefficient exhibit a rise in tandem with augmented volume flow rate and concentration gradient. Notably, the simulation results harmonize remarkably well with experimental data. Rigorous validation against prior studies underscores the robust consistency of these outcomes. In the pursuit of augmenting heat transfer, a volume fraction of 3% emerges as particularly influential, yielding an impressive 53.8% enhancement. Minor increments in the friction factor, while present, prove negligible and can be safely overlooked.展开更多
High-efficiency solar energy systems are characterized by their designs,which primarily rely on effective concentration and conversion methods of solar radiation.Evaluation of the performance enhancement of flat plate...High-efficiency solar energy systems are characterized by their designs,which primarily rely on effective concentration and conversion methods of solar radiation.Evaluation of the performance enhancement of flat plate solar collectors by integration with thermal energy storage could be achieved through simulation of proposed designs.The work aims to analyze a new solar collector integrated with a porous medium and shell and coiled tube heat exchanger.The heat transfer enhancement was investigated by varying the geometrical parameters in shell and helically coiled tubes operating with CuFe_(2)O_(4)/water with different volume fractions of 0.02%,0.05%,and 0.1 vol.%.This study presents an experimental and numerical investigation of the performance of the flat plate solar collector integrated with a helical coil heat exchanger using nanofluids.The solar collector has a dimension of 180 cm×80 cm and works with close-loop systems operated by the thermo siphon method.Two types of helical coil heat exchangers,Coil-A and Coil-B have been investigated.The diameter of the glass porous media was investigated at 2,5,and 10 mm.The results manifested that the enhancement in the Nusselt number of the nanofluid reached maximum values of 15%,18%,and 22%for nanofluid ferrofluid with volume concentrations of 0.02%,0.05%,and 0.1%,respectively,for Coil-A.The maximum values of Nusselt number enhancement were 14%,17%,and 20%for ferrofluid concentrations of 0.02%,0.05%,and 0.1 vol.%,respectively,for Coil-B.The results also elucidated that the nanofluid mass flow and heat transfer rates could be noticeably compared to water.Where the increase is 5%,10%,and 20%for each concentration and diameter of the porous media,it specifies the enormous ranges of operational and geometrical parameters.展开更多
This study investigates laminar convection in three regimes(forced convection,mixed convection,and natural convection)of a bi-nanofluid(Cu-Al_(2)O_(3)-water)/mono-nanofluid(Al_(2)O_(3)-water)inside a square enclosure ...This study investigates laminar convection in three regimes(forced convection,mixed convection,and natural convection)of a bi-nanofluid(Cu-Al_(2)O_(3)-water)/mono-nanofluid(Al_(2)O_(3)-water)inside a square enclosure of sliding vertical walls which are kept at cold temperature and moving up,down,or in opposite directions.The enclosure bottom is heated partially by a central heat source of various sizes while the horizontal walls are considered adiabatic.The thermal conductivity and dynamic viscosity are dependent on temperature and nanoparticle size.The conservation equations are implemented in the solver ANSYS R2(2020).The numerical predictions are successfully validated by comparison with data from the literature.Numerical simulations are carried out for various volume fractions of solid mono/hybrid-nanoparticles(0≤ϕ≤5%),Richardson numbers(0.001≤Ri≤10),and hot source lengths((1/5)H≤ε≤(4/5)H).Isothermal lines,streamlines,and average Nusselt numbers are analyzed.The thermal performance of nanofluids is compared to that of the base heat transfer fluid(water).Outcomes illustrate the flow characteristics significantly affected by the convection regime,hot source size,sidewall motion,and concentration of solid nanoparticles.In the case of sidewalls moving downward,using hybrid nanofluid(Cu-Al_(2)O_(3)-water)shows the highest heat transfer rate in the enclosure at Ri=1,ε=(4/5)H and volume fraction ofφ=5%where a significant increment(25.14%)of Nusselt number is obtained.展开更多
The thermal nanofluids have garnered widespread attention for their use in multiple thermal systems,including heating processes,sustainable energy,and nuclear reactions.Research on nanofluids has revealed that the the...The thermal nanofluids have garnered widespread attention for their use in multiple thermal systems,including heating processes,sustainable energy,and nuclear reactions.Research on nanofluids has revealed that the thermal efficiencies of such materials are adversely affected by various thermal features.The purpose of the current work is to demonstrate the thermal analysis of Jeffrey nanofluids with the suspension of microorganisms in the presence of variable thermal sources.The variable effects of thermal conductivity,Brownian diffusivity,and motile density are utilized.The investigated model also reveals the contributions of radiation phenomena and chemical reactions.A porous,saturated,moving surface with a suction phenomenon promotes flow.The modeling of the problem is based on the implementation of the Cattaneo-Christov approach.The convective thermal constraints are used to promote the heat transfer features.A simplified form of the governing model is treated with the assistance of a shooting technique.The physical effects of different parameters for the problem are presented.The current problem justifies its applications in heat transfer,coating processes,heat exchangers,cooling systems in microelectronics,solar systems,chemical processes,etc.展开更多
The current work aims to numerically investigate the impact of using(50%ZnO and 50%Al_(2)O_(3))hybrid nanofluid(HNf)on the performance of convective heat transfer inside a horizontal wavy micro-channel.This issue repr...The current work aims to numerically investigate the impact of using(50%ZnO and 50%Al_(2)O_(3))hybrid nanofluid(HNf)on the performance of convective heat transfer inside a horizontal wavy micro-channel.This issue represents a novel approach that has not been extensively covered in previous research and provides more valuable insights into the performance of HNfs in complex flow geometries.The conjugate heat transfer approach is used to demonstrate the influence of adding hybrid nanoparticles(50%Al_(2)O_(3) and 50%ZnO)to pure water on the rate of heat transfer.The governing equations are numerically solved by using ANSYS FLUENT(2021 R2).The behaviors of convective heat transfer coefficient(HTC),Nusselt number(Nu)and pressure drop are presented under various volume concentrations of(1%,2%and 3%)and Reynolds numbers(Re=600,1200 and 1800).The numerical results are validated against the experimental one,where the validation test shows a good agreement between them.The findings display that the highest HTC enhancement is reached at 59.5%when using a volume concentration of 3%and Re=1800.TheNusselt number is increased with the rise in volume concentration of nanoparticles,where the value of the Nusselt number is improved by 42.25%at 3%volume concentration.The reduction in pressure is raised with an increase in volume concentration and Re.The results also show that the combination of dispersion characteristics,Brownian movement and nanoparticles leads to an improvement in the rate of heat transfer.It is concluded that Nu and the behavior of heat transfer are considerably enhanced when using a hybrid nanofluid inside a wavy micro-channel.展开更多
The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances.This study investigates experimentally the turbulent convective heat transfer characteristics of wat...The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances.This study investigates experimentally the turbulent convective heat transfer characteristics of waterbased nanofluids containing TiO_(2),CuO,and graphene nanoplatelet(GNP)nanoparticles as they flow through a copper tube.Both the dynamic viscosity and thermal conductivity of these nanofluids were modeled and experimentally measured across varying nanoparticle concentrations(0.01,0.02,and 0.03 vol.%)and temperatures(25℃,35℃,and 45℃).The findings indicate that the behavior of nanofluids depends on the parameter used for comparison with the base fluid.Notably,both the friction factor and heat transfer coefficient increase with higher nanoparticle volume concentrations at a constant Reynolds number.The results further reveal that the GNP/water nanofluid,with a volume concentration of 0.03%at 45℃,exhibit the highest Nusselt number,followed by the CuO/water and TiO_(2)/water nanofluids,with respective increases of 17.8%,11.09%,and 8.11%.展开更多
Peristaltic transport of non-Newtonian nanofluids with double diffusion is essential to biological engineering,microfluidics,and manufacturing processes.The authors tackle the key problem of Sisko nanofluids under dou...Peristaltic transport of non-Newtonian nanofluids with double diffusion is essential to biological engineering,microfluidics,and manufacturing processes.The authors tackle the key problem of Sisko nanofluids under double diffusion convection with thermal radiations and electroosmotic effects.Thestudy proposes a solution approach by using Morlet-Wavelet Neural Networks that can effectively solve this complex problem by their superior ability in the capture of nonlinear dynamics.These convergence analyses were calculated across fifty independent runs.Theil’s Inequality Coefficient and theMean Squared Error values range from 10^(-7) to 10^(-5) and 10^(-7) to 10^(-10),respectively.These values showed the proposed method is scientifically reliable and fast converging.Studies reveal that the intensity of the magnetic field causes a reduction in the flow velocity profile in the center of the channel.It is also evaluated that thermal radiations enhance the energy of the system,which promotes thermally induced diffusion and particle flow.The physical applications of this work pertain to improving fluid flow and heat transfer in engineering structures like converters or cooling devices or magnetic fluids in electronics,energy,and biomedical applications,where optimal control of fluid behavior is of paramount importance.展开更多
This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity a...This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity and thermal slip boundary conditions are also examined.The considered hybrid nano-fluid contains silver(Ag)and iron oxide(Fe_(3)O_(4))nanoparticles dispersed in the water to prepare the Ag-Fe_(3)O_(4)/water-based hybrid nanofluid.The requisite posited partial differential equations model is converted to ordinary differential equations using similarity transformations.For a numerical solution,the shooting method in Maple is employed.Moreover,the duality in solutions is achieved for both cases of the disk(stretching(λ>0)and shrinking(λ<0)).At the same time,a unique solution is observed for λ=0.No solution is found for them at λ<λ_(c),whereas the solutions are split at the λ=λ_(c).Besides,the value of the λ_(c) is dependent on the φ_(hnf).Meanwhile,the values of f″(0)and -θ′(0)intensified with increasing φ_(hnf).Stability analysis has been applied using bvp4c in MATLAB software due to a dual solution.Furthermore,analysis shows that the first solution is stable and feasible physically.For the slip parameters,an increase in the velocity slip parameter increases the velocity and shear stress profiles while increasing the temperature profile in the first solutions.While the rise in thermal slip parameter reduces the temperature profile nanoparticle volume fractions increase it.展开更多
This study explores free convective heat transfer in an electrically conducting nanofluid flow over a moving semi-infinite flat plate under the influence of an induced magnetic field and viscous dissipation.The veloci...This study explores free convective heat transfer in an electrically conducting nanofluid flow over a moving semi-infinite flat plate under the influence of an induced magnetic field and viscous dissipation.The velocity and magnetic field vectors are aligned at a distance from the plate.The Spectral Relaxation Method(SRM)is used to numerically solve the coupled nonlinear partial differential equations,analyzing the effects of the Eckert number on heat and mass transfer.Various nanofluids containing Cu,Ag,Al_(2)O_(3),and TiO_(2) nanoparticles are examined to assess how external magnetic fields influence fluid behavior.Key parameters,including the nanoparticle volume fraction ϕ,magnetic parameter M,magnetic Prandtl number Prm,and Eckert number Ec,are evaluated for their impact on velocity,induced magnetic field,and heat transfer.Results indicate that increasing the magnetic parameter reduces velocity and magnetic field components in alumina-water nanofluids,while a higher nanoparticle volume fraction enhances the thermal boundary layer.Greater viscous dissipation(Ec)increases temperature,and Al_(2)O_(3) nanofluids exhibit higher speeds than Cu,Ag,and TiO_(2) due to density differences.Silver-water nanofluids,with their higher density,move more slowly.The SRM results closely align with those from Maple,confirming the method’s accuracy.展开更多
To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary...To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary oil recovery.The composition optimization and performance evaluation of nanofluids with nano-silica and sodium lauryl sulfate as the main components were carried out,and the effects of the nanofluid with the optimal ratio on coal wettability were studied through spontaneous upward imbibition experiments.The results show that the composite nanofluid has a lower surface tension,and the lowest value of the interfacial tension is 15.79 m N/m.Therefore,the composite nanofluid can enhance the wettability of coal.However,its effects on coal samples with different metamorphic degrees is different,that is,low rank coal is the largest,middle rank coal is the second,and high rank coal is the least.In addition,a functional relationship between time and imbibition height is found for pulverized coal with different particle sizes.When the particle size of pulverized coal is 60–80 mesh,the wettability of nanofluid to coal is best.The findings in this paper provide a new perspective for improving the water injection efficiency for coal seams with low permeability.展开更多
Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanop...Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanoparticles improve not only the heat transfer capacity but also the lubrication performance.The physical and chemical proper-ties of nanofluid change when Al_(2)O_(3)nanoparticles are added.However,the effects of the concentration of nanofluid on lubrication performance remain unknown.Furthermore,the mechanisms of interaction between Al_(2)O_(3)nanoparti-cles and cottonseed oil are unclear.In this research,nanofluid is prepared by adding different mass concentrations of Al_(2)O_(3)nanoparticles(0,0.2%,0.5%,1%,1.5%,and 2%wt)to cottonseed oil during minimum quantity lubrication(MQL)milling 45 steel.The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters(milling force,specific energy)and micro-evaluation parameters(surface roughness,micro morphology,contact angle).The result show that the specific energy is at the minimum(114 J/mm^(3)),and the roughness value is the lowest(1.63μm)when the concentration is 0.5 wt%.The surfaces of the chip and workpiece are the smoothest,and the contact angle is the lowest,indicating that the tribological proper-ties are the best under 0.5 wt%.This research investigates the intercoupling mechanisms of Al_(2)O_(3)nanoparticles and cottonseed base oil,and acquires the optimal Al_(2)O_(3)nanofluid concentration to receive satisfactory tribological properties.展开更多
Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_...Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_(3)O_(4)-kerosene,Fe_(3)O_(4)-ethylene glycol,and Fe_(3)O_(4)-engine oil nanofluids inside a lid-driven triangular cavity.In particular,a two-component non-homogeneous nanofluid model is used.The bottom wall of the enclosure is insulated,whereas the inclined wall is kept a constant(cold)temperature and various temperature laws are assumed for the vertical wall,namely:θ=1(Case 1),θ=Yð1YÞ(Case 2),andθ=sinð2-YÞ(Case 3).A tilted magnetic field of uniform strength is also present in the fluid domain.From a numerical point of view,the problem is addressed using the Galerkin weighted residual finite element method.The role played by different parameters is assessed,discussed critically and interpreted from a physical standpoint.We find that a higher aspect ratio can produce an increase in the average Nusselt number.Moreover,the Fe_(3)O_(4)-EO and Fe_(3)O_(4)-H2O nanofluids provide the highest and smallest rate of heat transfer,respectively,for all the considered(three variants of)thermal boundary conditions.展开更多
Thermo-hydraulic characteristics of TiO_2-water nanofluids in thin-wall stainless steel test tubes(corrugated tube and circular tube) filled with copper foam(40 PPI) are experimentally investigated and compared with t...Thermo-hydraulic characteristics of TiO_2-water nanofluids in thin-wall stainless steel test tubes(corrugated tube and circular tube) filled with copper foam(40 PPI) are experimentally investigated and compared with those in test tubes without copper foam. The effects of nanoparticle mass concentration on flow and heat transfer performances are investigated. In addition, the mutual restriction relationships between Reynolds number(Re), Nusselt number(Nu) and resistance coefficient(f) are discussed respectively. Also, the comprehensive coefficient of performance(CCP) between heat transfer and pressure drop is evaluated. The results show that core-enhancement region for heat transfer using experimental tubes filled with copper foam is notably different from that of tubes without copper foam. There is a corresponding Reynolds number(about Re = 2400) for the maximum CCP of each condition. And the heat transfer can be enhanced dramatically and sustained at 8000 ≤ Re ≤ 12000.展开更多
In the present research,Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction.The PDEs are converted into ordinary differential equat...In the present research,Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction.The PDEs are converted into ordinary differential equations(ODEs)using the similarity method.The obtained ordinary differential equations are solved numerically using shooting method along with RK-4.Part of the present study uses nanoparticles(NPs)like TiO_(2) andAl_(2)O_(3) and sodium carboxymethyl cellulose(CMC/water)is considered as a base fluid(BF).This study is conducted to find the influence of nanoparticles,Prandtl number,and magnetic field on velocity and temperature profile,however,the Nusselt number and coefficient of skin friction parameters are also presented in detail with the variation of nanoparticles and parameters.The obtained results of the present study are presented usingMATLAB.In addition to these,some simulations of partial differential equations are also shown using software for graphing surface plots of velocity profile and streamlines along with surface plots and isothermal contours of the temperature profile.展开更多
文摘Transport properties of nanofluids are extensively studied last decade. This has been motivated by the use of nanosized systems in various applications. The viscosity of nanofluids is of great significance as the application of nanofluids is always associated with their flow. However, despite the fairly large amount of available experimental information, there is a lack of systematic data on this issue and experimental results are often contradictory. The purpose of this review is to identify the typical parameters determining the viscosity of nanofluids. The dependence of the nanofluid viscosity on the particles concentration, their size and temperature is analyzed. It is explained why the viscosity of nanofluid does not described by the classical theories. It was shown that size of nanoparticles is the key characteristics of nanofluids. In addition the nanofluid is more structural liquid than the base one.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2021R1A6A1A10044950).
文摘The thermal conductivity of nanofluids is an important property that influences the heat transfer capabilities of nanofluids.Researchers rely on experimental investigations to explore nanofluid properties,as it is a necessary step before their practical application.As these investigations are time and resource-consuming undertakings,an effective prediction model can significantly improve the efficiency of research operations.In this work,an Artificial Neural Network(ANN)model is developed to predict the thermal conductivity of metal oxide water-based nanofluid.For this,a comprehensive set of 691 data points was collected from the literature.This dataset is split into training(70%),validation(15%),and testing(15%)and used to train the ANN model.The developed model is a backpropagation artificial neural network with a 4–12–1 architecture.The performance of the developed model shows high accuracy with R values above 0.90 and rapid convergence.It shows that the developed ANN model accurately predicts the thermal conductivity of nanofluids.
基金supported by DST-FIST(Government of India)(Grant No.SR/FIST/MS-1/2017/13)and Seed Money Project(Grant No.DoRDC/733).
文摘This study numerically examines the heat and mass transfer characteristics of two ternary nanofluids via converging and diverg-ing channels.Furthermore,the study aims to assess two ternary nanofluids combinations to determine which configuration can provide better heat and mass transfer and lower entropy production,while ensuring cost efficiency.This work bridges the gap be-tween academic research and industrial feasibility by incorporating cost analysis,entropy generation,and thermal efficiency.To compare the velocity,temperature,and concentration profiles,we examine two ternary nanofluids,i.e.,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O and TiO_(2)+SiO_(2)+Cu/H_(2)O,while considering the shape of nanoparticles.The velocity slip and Soret/Dufour effects are taken into consideration.Furthermore,regression analysis for Nusselt and Sherwood numbers of the model is carried out.The Runge-Kutta fourth-order method with shooting technique is employed to acquire the numerical solution of the governed system of ordinary differential equations.The flow pattern attributes of ternary nanofluids are meticulously examined and simulated with the fluc-tuation of flow-dominating parameters.Additionally,the influence of these parameters is demonstrated in the flow,temperature,and concentration fields.For variation in Eckert and Dufour numbers,TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher temperature than TiO_(2)+SiO_(2)+Cu/H_(2)O.The results obtained indicate that the ternary nanofluid TiO_(2)+SiO_(2)+Al_(2)O_(3)/H_(2)O has a higher heat transfer rate,lesser entropy generation,greater mass transfer rate,and lower cost than that of TiO_(2)+SiO_(2)+Cu/H_(2)O ternary nanofluid.
基金funded by the Science and Technology Project of Tianjin(No.24YDTPJC00680)the National Natural Science Foundation of China(No.52406191).
文摘The growth of computing power in data centers(DCs)leads to an increase in energy consumption and noise pollution of air cooling systems.Chip-level cooling with high-efficiency coolant is one of the promising methods to address the cooling challenge for high-power devices in DCs.Hybrid nanofluid(HNF)has the advantages of high thermal conductivity and good rheological properties.This study summarizes the numerical investigations of HNFs in mini/micro heat sinks,including the numerical methods,hydrothermal characteristics,and enhanced heat transfer technologies.The innovations of this paper include:(1)the characteristics,applicable conditions,and scenarios of each theoretical method and numerical method are clarified;(2)the molecular dynamics(MD)simulation can reveal the synergy effect,micro motion,and agglomeration morphology of different nanoparticles.Machine learning(ML)presents a feasiblemethod for parameter prediction,which provides the opportunity for the intelligent regulation of the thermal performance of HNFs;(3)the HNFs flowboiling and the synergy of passive and active technologies may further improve the overall efficiency of liquid cooling systems in DCs.This review provides valuable insights and references for exploring the multi-phase flow and heat transport mechanisms of HNFs,and promoting the practical application of HNFs in chip-level liquid cooling in DCs.
文摘This study delves into both experimental and analytical examinations of heat exchange in a straight channel, where Al_(2)O_(3)-water nanofluids are utilized, spanning the Reynolds number spectrum from 100 to 1800. Diverse volume fractions(1%, 2%, and 3%) of Al_(2)O_(3)-water nanofluids are meticulously prepared and analyzed. The essential physical properties of these nanofluids, critical for evaluating their thermal and flow characteristics, have been comprehensively assessed. From a quantitative perspective, numerical simulations are employed to predict the Nusselt number(Nu) and friction factor(f). The empirical findings reveal intriguing trends: the friction factor experiences an upward trend with diminishing velocity, attributed to heightened molecular cohesion. Conversely, the friction factor demonstrates a decline with diminishing volume fractions, a consequence of reduced particle size. Both the nanofluid's viscosity and heat transfer coefficient exhibit a rise in tandem with augmented volume flow rate and concentration gradient. Notably, the simulation results harmonize remarkably well with experimental data. Rigorous validation against prior studies underscores the robust consistency of these outcomes. In the pursuit of augmenting heat transfer, a volume fraction of 3% emerges as particularly influential, yielding an impressive 53.8% enhancement. Minor increments in the friction factor, while present, prove negligible and can be safely overlooked.
文摘High-efficiency solar energy systems are characterized by their designs,which primarily rely on effective concentration and conversion methods of solar radiation.Evaluation of the performance enhancement of flat plate solar collectors by integration with thermal energy storage could be achieved through simulation of proposed designs.The work aims to analyze a new solar collector integrated with a porous medium and shell and coiled tube heat exchanger.The heat transfer enhancement was investigated by varying the geometrical parameters in shell and helically coiled tubes operating with CuFe_(2)O_(4)/water with different volume fractions of 0.02%,0.05%,and 0.1 vol.%.This study presents an experimental and numerical investigation of the performance of the flat plate solar collector integrated with a helical coil heat exchanger using nanofluids.The solar collector has a dimension of 180 cm×80 cm and works with close-loop systems operated by the thermo siphon method.Two types of helical coil heat exchangers,Coil-A and Coil-B have been investigated.The diameter of the glass porous media was investigated at 2,5,and 10 mm.The results manifested that the enhancement in the Nusselt number of the nanofluid reached maximum values of 15%,18%,and 22%for nanofluid ferrofluid with volume concentrations of 0.02%,0.05%,and 0.1%,respectively,for Coil-A.The maximum values of Nusselt number enhancement were 14%,17%,and 20%for ferrofluid concentrations of 0.02%,0.05%,and 0.1 vol.%,respectively,for Coil-B.The results also elucidated that the nanofluid mass flow and heat transfer rates could be noticeably compared to water.Where the increase is 5%,10%,and 20%for each concentration and diameter of the porous media,it specifies the enormous ranges of operational and geometrical parameters.
文摘This study investigates laminar convection in three regimes(forced convection,mixed convection,and natural convection)of a bi-nanofluid(Cu-Al_(2)O_(3)-water)/mono-nanofluid(Al_(2)O_(3)-water)inside a square enclosure of sliding vertical walls which are kept at cold temperature and moving up,down,or in opposite directions.The enclosure bottom is heated partially by a central heat source of various sizes while the horizontal walls are considered adiabatic.The thermal conductivity and dynamic viscosity are dependent on temperature and nanoparticle size.The conservation equations are implemented in the solver ANSYS R2(2020).The numerical predictions are successfully validated by comparison with data from the literature.Numerical simulations are carried out for various volume fractions of solid mono/hybrid-nanoparticles(0≤ϕ≤5%),Richardson numbers(0.001≤Ri≤10),and hot source lengths((1/5)H≤ε≤(4/5)H).Isothermal lines,streamlines,and average Nusselt numbers are analyzed.The thermal performance of nanofluids is compared to that of the base heat transfer fluid(water).Outcomes illustrate the flow characteristics significantly affected by the convection regime,hot source size,sidewall motion,and concentration of solid nanoparticles.In the case of sidewalls moving downward,using hybrid nanofluid(Cu-Al_(2)O_(3)-water)shows the highest heat transfer rate in the enclosure at Ri=1,ε=(4/5)H and volume fraction ofφ=5%where a significant increment(25.14%)of Nusselt number is obtained.
基金appreciation to King Saud University for funding this work through researchers supporting project(No.RSPD2025R1056).
文摘The thermal nanofluids have garnered widespread attention for their use in multiple thermal systems,including heating processes,sustainable energy,and nuclear reactions.Research on nanofluids has revealed that the thermal efficiencies of such materials are adversely affected by various thermal features.The purpose of the current work is to demonstrate the thermal analysis of Jeffrey nanofluids with the suspension of microorganisms in the presence of variable thermal sources.The variable effects of thermal conductivity,Brownian diffusivity,and motile density are utilized.The investigated model also reveals the contributions of radiation phenomena and chemical reactions.A porous,saturated,moving surface with a suction phenomenon promotes flow.The modeling of the problem is based on the implementation of the Cattaneo-Christov approach.The convective thermal constraints are used to promote the heat transfer features.A simplified form of the governing model is treated with the assistance of a shooting technique.The physical effects of different parameters for the problem are presented.The current problem justifies its applications in heat transfer,coating processes,heat exchangers,cooling systems in microelectronics,solar systems,chemical processes,etc.
文摘The current work aims to numerically investigate the impact of using(50%ZnO and 50%Al_(2)O_(3))hybrid nanofluid(HNf)on the performance of convective heat transfer inside a horizontal wavy micro-channel.This issue represents a novel approach that has not been extensively covered in previous research and provides more valuable insights into the performance of HNfs in complex flow geometries.The conjugate heat transfer approach is used to demonstrate the influence of adding hybrid nanoparticles(50%Al_(2)O_(3) and 50%ZnO)to pure water on the rate of heat transfer.The governing equations are numerically solved by using ANSYS FLUENT(2021 R2).The behaviors of convective heat transfer coefficient(HTC),Nusselt number(Nu)and pressure drop are presented under various volume concentrations of(1%,2%and 3%)and Reynolds numbers(Re=600,1200 and 1800).The numerical results are validated against the experimental one,where the validation test shows a good agreement between them.The findings display that the highest HTC enhancement is reached at 59.5%when using a volume concentration of 3%and Re=1800.TheNusselt number is increased with the rise in volume concentration of nanoparticles,where the value of the Nusselt number is improved by 42.25%at 3%volume concentration.The reduction in pressure is raised with an increase in volume concentration and Re.The results also show that the combination of dispersion characteristics,Brownian movement and nanoparticles leads to an improvement in the rate of heat transfer.It is concluded that Nu and the behavior of heat transfer are considerably enhanced when using a hybrid nanofluid inside a wavy micro-channel.
文摘The use of nanofluids as heat transfer media represents an innovative strategy to enhance heat transfer performances.This study investigates experimentally the turbulent convective heat transfer characteristics of waterbased nanofluids containing TiO_(2),CuO,and graphene nanoplatelet(GNP)nanoparticles as they flow through a copper tube.Both the dynamic viscosity and thermal conductivity of these nanofluids were modeled and experimentally measured across varying nanoparticle concentrations(0.01,0.02,and 0.03 vol.%)and temperatures(25℃,35℃,and 45℃).The findings indicate that the behavior of nanofluids depends on the parameter used for comparison with the base fluid.Notably,both the friction factor and heat transfer coefficient increase with higher nanoparticle volume concentrations at a constant Reynolds number.The results further reveal that the GNP/water nanofluid,with a volume concentration of 0.03%at 45℃,exhibit the highest Nusselt number,followed by the CuO/water and TiO_(2)/water nanofluids,with respective increases of 17.8%,11.09%,and 8.11%.
文摘Peristaltic transport of non-Newtonian nanofluids with double diffusion is essential to biological engineering,microfluidics,and manufacturing processes.The authors tackle the key problem of Sisko nanofluids under double diffusion convection with thermal radiations and electroosmotic effects.Thestudy proposes a solution approach by using Morlet-Wavelet Neural Networks that can effectively solve this complex problem by their superior ability in the capture of nonlinear dynamics.These convergence analyses were calculated across fifty independent runs.Theil’s Inequality Coefficient and theMean Squared Error values range from 10^(-7) to 10^(-5) and 10^(-7) to 10^(-10),respectively.These values showed the proposed method is scientifically reliable and fast converging.Studies reveal that the intensity of the magnetic field causes a reduction in the flow velocity profile in the center of the channel.It is also evaluated that thermal radiations enhance the energy of the system,which promotes thermally induced diffusion and particle flow.The physical applications of this work pertain to improving fluid flow and heat transfer in engineering structures like converters or cooling devices or magnetic fluids in electronics,energy,and biomedical applications,where optimal control of fluid behavior is of paramount importance.
基金the Researchers Supporting Project number(RSPD2025R997),King Saud University,Riyadh,Saudi Arabia.
文摘This paper discusses the model of the boundary layer(BL)flow and the heat transfer characteristics of hybrid nanofluid(HNF)over shrinking/stretching disks.In addition,the thermal radiation and the impact of velocity and thermal slip boundary conditions are also examined.The considered hybrid nano-fluid contains silver(Ag)and iron oxide(Fe_(3)O_(4))nanoparticles dispersed in the water to prepare the Ag-Fe_(3)O_(4)/water-based hybrid nanofluid.The requisite posited partial differential equations model is converted to ordinary differential equations using similarity transformations.For a numerical solution,the shooting method in Maple is employed.Moreover,the duality in solutions is achieved for both cases of the disk(stretching(λ>0)and shrinking(λ<0)).At the same time,a unique solution is observed for λ=0.No solution is found for them at λ<λ_(c),whereas the solutions are split at the λ=λ_(c).Besides,the value of the λ_(c) is dependent on the φ_(hnf).Meanwhile,the values of f″(0)and -θ′(0)intensified with increasing φ_(hnf).Stability analysis has been applied using bvp4c in MATLAB software due to a dual solution.Furthermore,analysis shows that the first solution is stable and feasible physically.For the slip parameters,an increase in the velocity slip parameter increases the velocity and shear stress profiles while increasing the temperature profile in the first solutions.While the rise in thermal slip parameter reduces the temperature profile nanoparticle volume fractions increase it.
文摘This study explores free convective heat transfer in an electrically conducting nanofluid flow over a moving semi-infinite flat plate under the influence of an induced magnetic field and viscous dissipation.The velocity and magnetic field vectors are aligned at a distance from the plate.The Spectral Relaxation Method(SRM)is used to numerically solve the coupled nonlinear partial differential equations,analyzing the effects of the Eckert number on heat and mass transfer.Various nanofluids containing Cu,Ag,Al_(2)O_(3),and TiO_(2) nanoparticles are examined to assess how external magnetic fields influence fluid behavior.Key parameters,including the nanoparticle volume fraction ϕ,magnetic parameter M,magnetic Prandtl number Prm,and Eckert number Ec,are evaluated for their impact on velocity,induced magnetic field,and heat transfer.Results indicate that increasing the magnetic parameter reduces velocity and magnetic field components in alumina-water nanofluids,while a higher nanoparticle volume fraction enhances the thermal boundary layer.Greater viscous dissipation(Ec)increases temperature,and Al_(2)O_(3) nanofluids exhibit higher speeds than Cu,Ag,and TiO_(2) due to density differences.Silver-water nanofluids,with their higher density,move more slowly.The SRM results closely align with those from Maple,confirming the method’s accuracy.
基金supported by the National Natural Science Foundation of China(Nos.51974176,51934004,52174194)the Shandong Province Natural Science Foundation of Outstanding Youth Fund(ZR2020JQ22)+1 种基金the Shandong Province Colleges and Universities Youth Innovation and Technology Support Program(2019KJH006)the Special funds for Taishan scholar project(TS20190935)。
文摘To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary oil recovery.The composition optimization and performance evaluation of nanofluids with nano-silica and sodium lauryl sulfate as the main components were carried out,and the effects of the nanofluid with the optimal ratio on coal wettability were studied through spontaneous upward imbibition experiments.The results show that the composite nanofluid has a lower surface tension,and the lowest value of the interfacial tension is 15.79 m N/m.Therefore,the composite nanofluid can enhance the wettability of coal.However,its effects on coal samples with different metamorphic degrees is different,that is,low rank coal is the largest,middle rank coal is the second,and high rank coal is the least.In addition,a functional relationship between time and imbibition height is found for pulverized coal with different particle sizes.When the particle size of pulverized coal is 60–80 mesh,the wettability of nanofluid to coal is best.The findings in this paper provide a new perspective for improving the water injection efficiency for coal seams with low permeability.
基金Supported by National Natural Science Foundation of China(Grant Nos.51806112,51975305)PhD Research Startup Foundation of Qingdao University of Technology,China(Grant Nos.JC2022-012,20312008).
文摘Nanofluid minimum quantity lubrication(NMQL)is a green processing technology.Cottonseed oil is suitable as base oil because of excellent lubrication performance,low freezing temperature,and high yield.Al_(2)O_(3)nanoparticles improve not only the heat transfer capacity but also the lubrication performance.The physical and chemical proper-ties of nanofluid change when Al_(2)O_(3)nanoparticles are added.However,the effects of the concentration of nanofluid on lubrication performance remain unknown.Furthermore,the mechanisms of interaction between Al_(2)O_(3)nanoparti-cles and cottonseed oil are unclear.In this research,nanofluid is prepared by adding different mass concentrations of Al_(2)O_(3)nanoparticles(0,0.2%,0.5%,1%,1.5%,and 2%wt)to cottonseed oil during minimum quantity lubrication(MQL)milling 45 steel.The tribological properties of nanofluid with different concentrations at the tool/workpiece interface are studied through macro-evaluation parameters(milling force,specific energy)and micro-evaluation parameters(surface roughness,micro morphology,contact angle).The result show that the specific energy is at the minimum(114 J/mm^(3)),and the roughness value is the lowest(1.63μm)when the concentration is 0.5 wt%.The surfaces of the chip and workpiece are the smoothest,and the contact angle is the lowest,indicating that the tribological proper-ties are the best under 0.5 wt%.This research investigates the intercoupling mechanisms of Al_(2)O_(3)nanoparticles and cottonseed base oil,and acquires the optimal Al_(2)O_(3)nanofluid concentration to receive satisfactory tribological properties.
文摘Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_(3)O_(4)-kerosene,Fe_(3)O_(4)-ethylene glycol,and Fe_(3)O_(4)-engine oil nanofluids inside a lid-driven triangular cavity.In particular,a two-component non-homogeneous nanofluid model is used.The bottom wall of the enclosure is insulated,whereas the inclined wall is kept a constant(cold)temperature and various temperature laws are assumed for the vertical wall,namely:θ=1(Case 1),θ=Yð1YÞ(Case 2),andθ=sinð2-YÞ(Case 3).A tilted magnetic field of uniform strength is also present in the fluid domain.From a numerical point of view,the problem is addressed using the Galerkin weighted residual finite element method.The role played by different parameters is assessed,discussed critically and interpreted from a physical standpoint.We find that a higher aspect ratio can produce an increase in the average Nusselt number.Moreover,the Fe_(3)O_(4)-EO and Fe_(3)O_(4)-H2O nanofluids provide the highest and smallest rate of heat transfer,respectively,for all the considered(three variants of)thermal boundary conditions.
基金Supported by the National Natural Science Foundation of China(51606214)
文摘Thermo-hydraulic characteristics of TiO_2-water nanofluids in thin-wall stainless steel test tubes(corrugated tube and circular tube) filled with copper foam(40 PPI) are experimentally investigated and compared with those in test tubes without copper foam. The effects of nanoparticle mass concentration on flow and heat transfer performances are investigated. In addition, the mutual restriction relationships between Reynolds number(Re), Nusselt number(Nu) and resistance coefficient(f) are discussed respectively. Also, the comprehensive coefficient of performance(CCP) between heat transfer and pressure drop is evaluated. The results show that core-enhancement region for heat transfer using experimental tubes filled with copper foam is notably different from that of tubes without copper foam. There is a corresponding Reynolds number(about Re = 2400) for the maximum CCP of each condition. And the heat transfer can be enhanced dramatically and sustained at 8000 ≤ Re ≤ 12000.
基金The fifth author also thanks Prince Sultan University for funding this work through research-group number RG-DES2017-01-17.
文摘In the present research,Tiwari and Das model are used for the impact of a magnetic field on non-Newtonian nanofluid flow in the presence of injection and suction.The PDEs are converted into ordinary differential equations(ODEs)using the similarity method.The obtained ordinary differential equations are solved numerically using shooting method along with RK-4.Part of the present study uses nanoparticles(NPs)like TiO_(2) andAl_(2)O_(3) and sodium carboxymethyl cellulose(CMC/water)is considered as a base fluid(BF).This study is conducted to find the influence of nanoparticles,Prandtl number,and magnetic field on velocity and temperature profile,however,the Nusselt number and coefficient of skin friction parameters are also presented in detail with the variation of nanoparticles and parameters.The obtained results of the present study are presented usingMATLAB.In addition to these,some simulations of partial differential equations are also shown using software for graphing surface plots of velocity profile and streamlines along with surface plots and isothermal contours of the temperature profile.