Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemica...Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
The development of self-charging supercapacitor power cells(SCSPCs)has profound implications for smart electronic devices used in different fields.Here,we epitaxially electrodeposited Mo-and Fe-codoped MnO_(2)films on...The development of self-charging supercapacitor power cells(SCSPCs)has profound implications for smart electronic devices used in different fields.Here,we epitaxially electrodeposited Mo-and Fe-codoped MnO_(2)films on piezoelectric ZnO nanoarrays(NAs)grown on the flexible carbon cloth(denoted ZnO@Mo-Fe-MnO_(2)NAs).A self-charging supercapacitor power cell device was assembled with the Mo-and Fe-codoped MnO_(2)nanoarray electrode and poly(vinylidenefluoride-co-trifluoroethylene)(PVDF-Trfe)piezoelectric film doped with BaTiO_(3)(BTO)and carbon nanotubes(CNTs)(denoted PVDF-Trfe/CNTs/BTO).The self-charging supercapacitor power cell device exhibited an energy density of 30μWh cm^(-2)with a high power density of 40 mW cm^(-2)and delivered an excellent self-charging performance of 363 mV(10 N)driven by both the piezoelectric ZnO nanoarrays and the poly(vinylidenefluoride-co-trifluoroethylene)piezoelectric film doped with BaTiO_(3)and carbon nanotubes.More intriguingly,the device could also be self-charged by 184 mV due to residual stress alone and showed excellent energy conversion efficiency and low self-discharge rate.This work illustrates for the first time the self-charging mechanism involving electrolyte ion migration driven by both electrodes and films.A comprehensive analysis strongly confirmed the important contribution of the piezoelectric ZnO nanoarrays in the self-charging process of the self-charging supercapacitor power cell device.This work provides novel directions and insights for the development of selfcharging supercapacitor power cells.展开更多
Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not ...Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not only act as a scaffold for growth of MOF/PANI shell but also as Zn source for the formation of MOF. The morphology of ZnO@MOF@PANI composite is greatly influenced by the number of PANI electrodeposition cycles. Their structural and electrochemical properties were characterized with different techniques. The results indicate that the Zn O@MOF@PANI with 13 CV cycles of PANI deposition demonstrates the maximum specific capacitance of 340.7 F g-1 at 1.0 A g-1, good rate capability with84.3% capacitance retention from 1.0 to 10 A g-1 and excellent cycling life of 82.5% capacitance retention after 5000 cycles at high current density of 2.0 A g-1. This optimized core-shell nanoarchitecture endows the composite electrode with short ion diffusion pathway, rapid ion/electron transfer and high utilization of active materials, which thus result in excellent electrochemical performance of the ternary composite.展开更多
The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-in...The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.展开更多
Tailoring valence electron delocalization of transition metal center is of importance to achieve highly-active electrocatalysts for oxygen evolution reaction(OER).Herein,we demonstrate a“poor sulfur”route to synthes...Tailoring valence electron delocalization of transition metal center is of importance to achieve highly-active electrocatalysts for oxygen evolution reaction(OER).Herein,we demonstrate a“poor sulfur”route to synthesize surface electron-deficient Co_(9)S_(8) nanoarrays,where the binding energy(BE)of Co metal center is considerably higher than all reported Co_(9)S_(8)-based electrocatalysts.The resulting Co_(9)S_(8) electrocatalysts only require the overpotentials(h)of 265 and 326 mV at 10 and 100 mA cm^(-2) with a low Tafel slope of 56 mV dec^-(1) and a 60 hlasting stability in alkaline media.The OER kinetics are greatly expedited with a low reaction activation energy of 27.9 kJ mol^-(1) as well as abundant OOH*key intermediates(24%),thus exhibiting excellent catalytic performances.The surface electron-deficient engineering gives an available strategy to improve the catalytic activity of other advanced non-noble electrocatalysts.展开更多
In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes ...In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays.Droplets nucleated at the top(top-nucleation mode),or in the upside interpillar space of nanoarrays(side-nucleation mode),generate the non-wetting Cassie state,whereas the ones nucleated at the bottom corners between the nanoarrays(bottom-nucleation mode) present the wetting Wenzel state.Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes.The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated,indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface.The simulation results are compared well with the experimental observations reported in the literature.展开更多
The surface topography of implants plays a major role in osteogenesis and immunomodulation.In this study,three types of TiO_(2) nanoarrays including nanorod arrays with a diameter of 45 nm(TiO_(2)-N),nanorod arrays wi...The surface topography of implants plays a major role in osteogenesis and immunomodulation.In this study,three types of TiO_(2) nanoarrays including nanorod arrays with a diameter of 45 nm(TiO_(2)-N),nanorod arrays with a diameter of 60 nm(TiO_(2)-N N),and nanocone arrays(TiO_(2)-NW)are prepared on titanium and the behavior of bone marrow stromal cells(BMSCs)and polarization of macrophages are studied.Compared to the planar titanium control,TiO_(2) nanoarrays facilitate osteogenesis of BMSCs and stimulate the pro-healing M2 phenotype.However,adhesion,spreading,proliferation,and osteogenic differentiation of BMSCs are more pronounced on TiO_(2)-N N than both TiO_(2)-N and TiO_(2)-NW.TiO_(2)-NN also produces the best immune microenvironment,while TiO_(2)-NW is more favorable than TiO_(2)-NN from the viewpoint of cell adhesion and spreading of osteoblasts.展开更多
Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect an...Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect and uncontrollable dendrite growth.Herein,we design the in-situ grown lithiophilic Ni_(2)P nanoarrays inside nickel foam(PNF).Uniform Ni_(2)P nanoarrays coating presents a very low nucleation overpotential,which induces the homogeneous Li deposition in the entire spaces of three-dimensional(3D)metal framework.Specifically,the lithiophilic Ni_(2)P nanoarrays possess characteristics of electrical conductivity and structural stability,which have almost no expansion and damage during repeating Li plating/stripping.Therefore,they chronically inhibit the growth of Li dendrites.This results in an outstanding Coulombic efficiency(CE)of 98% at 3 mA cm^(-2) and an ultra long cycling life over 2000 cycles with a low overpotential.Consequently,the PNF-Li||LiFePO_(4) battery maintains a capacity retention of 95.3% with a stable CE of 99.9% over 500 cycles at 2 C.展开更多
Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature ...Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature of TMOs and the confined growth of nanostructures on the limited surfaces of electrode substrates result in the low areal capacities of TMO nanoarray electrodes,which seriously deteriorates the intrinsically high energy densities of Li-O2 batteries.Herein,we propose a hybrid nanoarray architecture design that integrates the high electronic conductivity of carbon nanoflakes(CNFs)and the high catalytic activity of Co3 O4 nanosheets on carbon cloth(CC).Due to the synergistic effect of two differently featured components,the hybrid nanoarrays(Co3 O4-CNF@CC)achieve a high reversible capacity of3.14 mA h cm-2 that cannot be achieved by only single components.Further,CNFs grown on CC induce the three-dimensionally distributed growth of ultrafine Co3 O4 nanosheets to enable the efficient utilization of catalysts.Thus,with the high catalytic efficiency,hybrid Co3 O4-CNF@CC also achieves a more prolonged cycling life than pristine TMO nanoarrays.The present work provides a new strategy for improving the performance of nanoarray oxygen electrodes via the hybrid architecture design that integrates the intrinsic properties of each component and induces the three-dimensional distribution of catalysts.展开更多
Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the bi...Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the binder/carbon free and free-standing cathodes for Li–O_2 batteries. Particularly, the single crystalline feature of Co_3O_4 nanosheets with a predominant high reactivity {112} exposed crystal plane and hierarchical porous nanostructure displayed better catalytic performance for both oxygen reduction reaction(during discharge process) and oxygen evolution reaction(during charge process). Li–O_2 battery with Co_3O_4 nanosheets cathode exhibited a higher discharge specific capacity(965 m Ah g^(-1)), lower discharge/charge over-potential and better cycling performance over 63 cycles at 100 mA g^(-1) with the specific capacity limited at 300 mAh g^(-1). The superior catalytic performance of Co_3O_4 nanosheets cathode is ascribed to the enlarging specific area and increasing the exposed Co^(3+) catalytic active sites within predominant {112} crystal plane which plays the key role in determining the adsorption energy for the reactants, enabling high round-trip efficiency and cyclic life.展开更多
Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silic...Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.展开更多
We propose a facile facet regulation enabled by nanoarray architecture to achieve a high faradic efficiency of Fe_(2)O_(3) catalyst for NRR. The a-Fe_(2)O_(3) nanorod arrays (NAs) were directly grown on carbon cloth (...We propose a facile facet regulation enabled by nanoarray architecture to achieve a high faradic efficiency of Fe_(2)O_(3) catalyst for NRR. The a-Fe_(2)O_(3) nanorod arrays (NAs) were directly grown on carbon cloth (CC) with specific (104) facet exposure. The highly exposed (104) facets provide abundant unsaturated Fe atoms with dangling bonds as nitrogen reduction reaction catalytically active sites. In addition, the NAs architecture enables the enhanced electrochemical surface area (ECSA) to fully manifest the active sites and maintain the mass diffusion. Thus, the selectively exposed (104) facets coupled with the high ECSA of NAs architecture achieve a high FE of 14.89% and a high yield rate of 17.28 μg h^(-1) cm^(-2). This work presents an effective strategy to develop highly efficient catalytic electrodes for electrochemical NRR via facet regulation and nanoarray architecture.展开更多
We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with p...We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.展开更多
Trifunctional Cu-mesh/Cu_(2)O@FeO nanoarrays heterostructure is designed and fabricated by integrating CuCu_(2)O@FeO nanoarrays onto Cu-mesh(CM)via an in situ growth and phase transformation process.It is successfully...Trifunctional Cu-mesh/Cu_(2)O@FeO nanoarrays heterostructure is designed and fabricated by integrating CuCu_(2)O@FeO nanoarrays onto Cu-mesh(CM)via an in situ growth and phase transformation process.It is successfully applied to efficiently mitigate the antibiotic pollution,including degradation of antibiotics,inactivation of antibiotic-resistant bacteria(ARB),and damage of antibiotics resistance genes(ARGs).Under visible-light irradiation,CM/CuCu_(2)O@FeO nanoarrays exhibit a superior degradation efficiency on antibiotics(e.g.,up to 99%in 25 min for tetracycline hydrochloride,TC),due to the generated reactive oxygen species(ROS),especially the dominant·O^(2−).It can fully inactivate E.coli(HB101)with initial number of~108 CFU mL^(−1) in 10 min,which is mainly attributed to the synergistic effects of 1D nanostructure,dissolved metal ions,and generated ROS.Meanwhile,it is able to damage ARGs after 180 min of photodegradation,including tetA(vs TC)of 3.3 log 10,aphA(vs kanamycin sulfate,KAN)of 3.4 log 10,and tnpA(vs ampicillin,AMP)of 4.4 log 10,respectively.This work explores a green way for treating antibiotic pollution under visible light.展开更多
Simultaneous nitrate reduction and sulfide oxidation reactions(NO_(3)RR and SOR)to generate valuable chemicals represent an appealing strategy for green synthesis;however,the sluggish kinetics seriously hinder their a...Simultaneous nitrate reduction and sulfide oxidation reactions(NO_(3)RR and SOR)to generate valuable chemicals represent an appealing strategy for green synthesis;however,the sluggish kinetics seriously hinder their application.Herein,we report that Ni dopants can optimize the electronic structure of MoS_(2),which thus favors the adsorption of reactants/intermediates and reduces the corresponding energy barriers.As a result,the designed catalyst shows a maximal Faradic efficiency of 88.4%and a corresponding yield rate of 66.7μmol·h^(-1)·cm^(-2)for NH3 synthesis,accompanied by a high robustness over 60 h.Besides,it can also trigger the SOR activity with a low potential of 0.105 V vs.reversible hydrogen electrode(RHE)to produce 10 mA·cm^(-2),far smaller than that needed for conventional water oxidation(1.545 V vs.RHE).Accordingly,a coupling system with NO_(3)RR and SOR is constructed for synchronous formation of value-added products on both anode and cathode.This work demonstrates an attractive attempt to construct advanced MoS_(2-)based catalysts towards electrosynthesis.展开更多
Bifunctional catalysts for hydrogen/oxygen evolution reactions(HER/OER)are urgently needed given the bright future of water splitting hydrogen production technology.Here,the self-supporting N and Ce dual-doped NiCoP n...Bifunctional catalysts for hydrogen/oxygen evolution reactions(HER/OER)are urgently needed given the bright future of water splitting hydrogen production technology.Here,the self-supporting N and Ce dual-doped NiCoP nanoarrays(denoted N,Ce-NiCoP/NF)grown on Ni foam are successfully constructed.When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes,the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm^(-2)with a robust durability,and demonstrate its significant potential for practical water electrolysis.According to both experiments and calculations,the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice,which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics.Moreover,the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer,thereby augmenting catalyst performance.This study offers a potentially effective approach involving the regulation of anion and cation double doping,as well as architectural engineering,for the purpose of designing and optimizing innovative electrocatalysts.展开更多
Rapid and ultrasensitive detection of pathogen-associated biomarkers is vital for the early diagnosis and therapy of bacterial infections.Herein,we developed a close-packed and ordered Au@AgPt array coupled with a cas...Rapid and ultrasensitive detection of pathogen-associated biomarkers is vital for the early diagnosis and therapy of bacterial infections.Herein,we developed a close-packed and ordered Au@AgPt array coupled with a cascade triggering strategy for surface-enhanced Raman scattering(SERS)and colorimetric identification of the Staphylococcus aureus biomarker micrococcal nuclease(MNase)in serum samples.The trimetallic Au@AgPt nanozymes can catalyze the oxidation of 3,3’,5,5’-tetramethylbenzidine(TMB)molecules to SERS-enhanced oxidized TMB(oxTMB),accompanied by the color change from colorless to blue.In the presence of S.aureus,the secreted MNase preferentially cut the nucleobase AT-rich regions of DNA sequences on magnetic beads(MBs)to release alkaline phosphatase(ALP),which subsequently mediated the oxTMB reduction for inducing the colorimetric/SERS signal fade away.Using this“on-to-off”triggering strategy,the target S.aureus can be recorded in a wide linear range with a limit of detection of 38 CFU/mL in the colorimetric mode and 6 CFU/mL in the SERS mode.Meanwhile,the MNase-mediated strategy characterized by high specificity and sensitivity successfully discriminated between patients with sepsis(n=7)and healthy participants(n=3),as well as monitored the prognostic progression of the disease(n=2).Overall,benefiting from highly active and dense“hot spot”substrate,MNase-mediated cascade response strategy,and colorimetric/SERS dual-signal output,this methodology will offer a promising avenue for the early diagnosis of S.aureus infection.展开更多
Solar energy driven photoelectrochemical(PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the pr...Solar energy driven photoelectrochemical(PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the promising strategies to make the continuous breakthroughs in solar to hydrogen conversion efficiency of PEC cells owing to their owned several advantages including enhanced reactive surface at the electrode/electrolyte interface, improved light absorption capability, increased charge separation efficiency and direct electron transport pathways. In this Review, we first introduce the structure,work principle and their relevant efficiency calculations of a PEC cell. We then give a summary of the state-of the-art research in the preparation strategies and growth mechanism for the metal oxide based nanoarrays, and some details about the performances of metal oxide based nanoarray photoanodes for PEC water splitting. Finally, we discuss key aspects which should be addressed in continued work on realizing high-efficiency metal oxide based nanoarray photoanodes for PEC solar water splitting systems.展开更多
Industrial-scale ammonia(NH_(3))production mainly relies on the energy-intensive and environmentally unfriendly Haber-Bosch process.Such issue can be avoided by electrocatalytic N_(2) reduction which however suffers f...Industrial-scale ammonia(NH_(3))production mainly relies on the energy-intensive and environmentally unfriendly Haber-Bosch process.Such issue can be avoided by electrocatalytic N_(2) reduction which however suffers from limited current efficiency and NH3 yield.Herein,we demonstrate ambient NH_(3) production via electrochemical nitrite(NO_(2)^(-))reduction catalyzed by a CoP nanoarray on titanium mesh(CoP NA/TM).When tested in 0.1 M PBS(pH=7)containing 500 ppm N0_(2)^(-),such CoP NA/TM is capable of affording a large NH_(3) yield of 2,260.7±51.5μg·h^(-1)·cm^(-2) and a high Faradaic efficiency of 90.0±2.3%at-0.2 V vs.a reversible hydrogen electrode.Density functional theory calculations reveal that the potential-determining step for NO_(2)^(-)reduction over CoP(112)is*NO2→*NO_(2)H.展开更多
基金financially supported by the National Natural Science Foundation of China(22205205)the Fundamental Research Funds of Zhejiang Sci-Tech University(ZSTU,25262157Y)the staff of beamline BL11B and BL13SSW at Shanghai Synchrotron Radiation Facility for experimental support。
文摘Developing energy-efficient nitrite-to-ammonia(NO_(2)RR)conversion technologies while simultaneously enabling the electrochemical upcycling of waste polyethylene terephthalate(PET)plastics into highvalue-added chemicals is of great significance.Herein,an atomic oxygen vacancy(V_(o))engineering is developed to optimize the catalytic performance of V_(o2)-Co(OH)F nanoarray towards the NO_(2)RR and PET-derived ethylene glycol oxidation reaction(EGOR).The optimal V_(o2)-Co(OH)F achieves an ultralow operating potential of -0.03 V vs.RHE at -100 mA cm^(-2)and a remarkable NH_(3)Faradaic efficiency(FE)of 98.4% at -0.2 V vs.RHE for NO_(2)RR,and a high formate FE of 98.03% for EGOR.Operando spectroscopic analysis and theoretical calculations revealed that oxygen vacancies play a crucial role in optimizing the electronic structure of V_(o2)-Co(OH)F,modulating the adsorption free energies of key reaction intermediates,and lowering the reaction energy barrier,thereby enhancing its overall catalytic performance.Remarkably,the V_(o2)-Co(OH)F-based NO_(2)RR||EGOR electrolyzer realized high NH_(3)and formate yield rates of 33.9 and 44.9 mg h^(-1)cm^(-2)at 1.7 V,respectively,while demonstrating outstanding long-term stability over 100 h.This work provides valuable insights into the rational design of advanced electrocatalysts for co-electrolysis systems.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
基金the support by the Key Research and Development Program of Jiangxi Province(20203BBE53069)the National Key R&D Program of China(2017YFA0208200)+5 种基金the National Natural Science Foundation of China(51862026,22022505,and 21872069)the Fundamental Research Funds for the Central Universities of China(02051438026,020514380272 and 020514380274)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(BK20220008)the Natural Science Foundation of Jiangxi Province(20192ACBL21048)the Nanjing International Col aboration Research Program(202201007 and 2022SX00000955)the Suzhou Gusu Leading Talent Program of Science and Technology Innovation and Entrepreneurship in Wujiang District(ZXL2021273)
文摘The development of self-charging supercapacitor power cells(SCSPCs)has profound implications for smart electronic devices used in different fields.Here,we epitaxially electrodeposited Mo-and Fe-codoped MnO_(2)films on piezoelectric ZnO nanoarrays(NAs)grown on the flexible carbon cloth(denoted ZnO@Mo-Fe-MnO_(2)NAs).A self-charging supercapacitor power cell device was assembled with the Mo-and Fe-codoped MnO_(2)nanoarray electrode and poly(vinylidenefluoride-co-trifluoroethylene)(PVDF-Trfe)piezoelectric film doped with BaTiO_(3)(BTO)and carbon nanotubes(CNTs)(denoted PVDF-Trfe/CNTs/BTO).The self-charging supercapacitor power cell device exhibited an energy density of 30μWh cm^(-2)with a high power density of 40 mW cm^(-2)and delivered an excellent self-charging performance of 363 mV(10 N)driven by both the piezoelectric ZnO nanoarrays and the poly(vinylidenefluoride-co-trifluoroethylene)piezoelectric film doped with BaTiO_(3)and carbon nanotubes.More intriguingly,the device could also be self-charged by 184 mV due to residual stress alone and showed excellent energy conversion efficiency and low self-discharge rate.This work illustrates for the first time the self-charging mechanism involving electrolyte ion migration driven by both electrodes and films.A comprehensive analysis strongly confirmed the important contribution of the piezoelectric ZnO nanoarrays in the self-charging process of the self-charging supercapacitor power cell device.This work provides novel directions and insights for the development of selfcharging supercapacitor power cells.
基金supported by the National Key R&D Program of China(2016YFE0131200)the National Natural Science Foundation of China(51702098)+1 种基金International Cooperation Project of Shanghai Municipal Science and Technology Committee(15520721100,18520744400)Research Program supported by the Ministry of Education,Youth,and Sports of the Czech Republic(LTACH17015)
文摘Hierarchical ZnO@metal-organic framework @polyaniline(ZnO@MOF@PANI) core-shell nanorod arrays on carbon cloth has been fabricated by combining electrodeposition and hydrothermal method. Well-ordered Zn O nanorods not only act as a scaffold for growth of MOF/PANI shell but also as Zn source for the formation of MOF. The morphology of ZnO@MOF@PANI composite is greatly influenced by the number of PANI electrodeposition cycles. Their structural and electrochemical properties were characterized with different techniques. The results indicate that the Zn O@MOF@PANI with 13 CV cycles of PANI deposition demonstrates the maximum specific capacitance of 340.7 F g-1 at 1.0 A g-1, good rate capability with84.3% capacitance retention from 1.0 to 10 A g-1 and excellent cycling life of 82.5% capacitance retention after 5000 cycles at high current density of 2.0 A g-1. This optimized core-shell nanoarchitecture endows the composite electrode with short ion diffusion pathway, rapid ion/electron transfer and high utilization of active materials, which thus result in excellent electrochemical performance of the ternary composite.
基金financially supported by the National Natural Science Foundation of China(Nos.21673169 and 51672205)the National Key Research and Development Program of China(No.2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities(Nos.2016IVA083 and 2017IB005)
文摘The present work proposes a novel strategy to fabricate an integrated architecture of gel polymer electrolyte (GPE)-nanoarray cathode for lithium-O2 batteries (LOBs). As a proof-of-concept experiment, the photo-initiated in situ polymerization of GPE was carried out via incorporating the precursor solution in advance into a self- standing binder-free oxygen electrode of Co3O4 nanosheets array grown on carbon cloth (Co3O4@CC), forming an integrated GPE-Co3O4@CC architecture. The performance of the solid-state LOBs using the GPE-Co3O4@CC assembly is greatly enhanced compared to the counterparts with a traditional cell structure, in which GPE was sandwiched by a lithium metal and a cathode. The enhanced performance is ascribed to the combination of the in situ polymerization of GPE and the versatile structure of nanoarray electrode, which results in abundant interfacial contacts between GPE and electrode. This work presents an alternative way to develop high-performance solid-state LOBs by combining the advantages of both gel polymer electrolytes and nanoarray electrodes.
基金supported by the National Natural Science Foundation of China(21838003,21808061 and 91534122)the Social Development Program of Shanghai(17DZ1200900)+1 种基金the Shanghai Scientific and Technological Innovation Project(18JC1410600)he Fundamental Research Funds for the Central Universities(222201718002).
文摘Tailoring valence electron delocalization of transition metal center is of importance to achieve highly-active electrocatalysts for oxygen evolution reaction(OER).Herein,we demonstrate a“poor sulfur”route to synthesize surface electron-deficient Co_(9)S_(8) nanoarrays,where the binding energy(BE)of Co metal center is considerably higher than all reported Co_(9)S_(8)-based electrocatalysts.The resulting Co_(9)S_(8) electrocatalysts only require the overpotentials(h)of 265 and 326 mV at 10 and 100 mA cm^(-2) with a low Tafel slope of 56 mV dec^-(1) and a 60 hlasting stability in alkaline media.The OER kinetics are greatly expedited with a low reaction activation energy of 27.9 kJ mol^-(1) as well as abundant OOH*key intermediates(24%),thus exhibiting excellent catalytic performances.The surface electron-deficient engineering gives an available strategy to improve the catalytic activity of other advanced non-noble electrocatalysts.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51101035,51371051,and 51306037)
文摘In the present study,the process of droplet condensation on superhydrophobic nanoarrays is simulated using a multicomponent multi-phase lattice Boltzmann model.The results indicate that three typical nucleation modes of condensate droplets are produced by changing the geometrical parameters of nanoarrays.Droplets nucleated at the top(top-nucleation mode),or in the upside interpillar space of nanoarrays(side-nucleation mode),generate the non-wetting Cassie state,whereas the ones nucleated at the bottom corners between the nanoarrays(bottom-nucleation mode) present the wetting Wenzel state.Time evolutions of droplet pressures at the upside and downside of the liquid phase are analyzed to understand the wetting behaviors of the droplets condensed from different nucleation modes.The phenomena of droplet condensation on nanoarrays patterned with different hydrophilic and hydrophobic regions are simulated,indicating that the nucleation mode of condensate droplets can also be manipulated by modifying the local intrinsic wettability of nanoarray surface.The simulation results are compared well with the experimental observations reported in the literature.
基金supported by the National Natural Science Foundation of China (No.52171240)the Postdoctoral Science Foundation of China (No.2021M691992)+3 种基金the Major Projects in Research and Development of Shanxi (Projects of International Cooperation,No.201803D421090)the City University of Hong Kong Donation Research Grant (No.DON-RMG 9229021)the Hong Kong PDFS-RGC Postdoctoral Fellowship Scheme (Nos.PDFS2122-1S08 and CityU 9061014)the Hong Kong HMRF (Health and Medical Research Fund) (Nos.2120972 and CityU 9211320).
文摘The surface topography of implants plays a major role in osteogenesis and immunomodulation.In this study,three types of TiO_(2) nanoarrays including nanorod arrays with a diameter of 45 nm(TiO_(2)-N),nanorod arrays with a diameter of 60 nm(TiO_(2)-N N),and nanocone arrays(TiO_(2)-NW)are prepared on titanium and the behavior of bone marrow stromal cells(BMSCs)and polarization of macrophages are studied.Compared to the planar titanium control,TiO_(2) nanoarrays facilitate osteogenesis of BMSCs and stimulate the pro-healing M2 phenotype.However,adhesion,spreading,proliferation,and osteogenic differentiation of BMSCs are more pronounced on TiO_(2)-N N than both TiO_(2)-N and TiO_(2)-NW.TiO_(2)-NN also produces the best immune microenvironment,while TiO_(2)-NW is more favorable than TiO_(2)-NN from the viewpoint of cell adhesion and spreading of osteoblasts.
基金financial supported by the National Natural Science Foundation of China(Grant Nos.51874361 and 51904343)the Science and technology program of Hunan Province(2019RS3002)。
文摘Lithium(Li)metal is the most potential anode material for the next-generation high-energy rechargeable batteries.However,intrinsic surface unevenness and‘hostless’nature of Li metal induces infinite volume effect and uncontrollable dendrite growth.Herein,we design the in-situ grown lithiophilic Ni_(2)P nanoarrays inside nickel foam(PNF).Uniform Ni_(2)P nanoarrays coating presents a very low nucleation overpotential,which induces the homogeneous Li deposition in the entire spaces of three-dimensional(3D)metal framework.Specifically,the lithiophilic Ni_(2)P nanoarrays possess characteristics of electrical conductivity and structural stability,which have almost no expansion and damage during repeating Li plating/stripping.Therefore,they chronically inhibit the growth of Li dendrites.This results in an outstanding Coulombic efficiency(CE)of 98% at 3 mA cm^(-2) and an ultra long cycling life over 2000 cycles with a low overpotential.Consequently,the PNF-Li||LiFePO_(4) battery maintains a capacity retention of 95.3% with a stable CE of 99.9% over 500 cycles at 2 C.
基金supported by grants from the National Natural Science Foundation of China(Nos.21673169,51672205,51972257)the National Key Research Program of China(No.2016YFA0202602)+1 种基金the Research Start-Up Fund from Wuhan University of Technologythe Fundamental Research Funds for the Central Universities(WUT:No.2019IB003)。
文摘Transition metal oxide(TMO)nanoarrays are promising architecture designs for self-supporting oxygen electrodes to achieve high catalytic activities in lithium-oxygen(Li-O2)batteries.However,the poor conductive nature of TMOs and the confined growth of nanostructures on the limited surfaces of electrode substrates result in the low areal capacities of TMO nanoarray electrodes,which seriously deteriorates the intrinsically high energy densities of Li-O2 batteries.Herein,we propose a hybrid nanoarray architecture design that integrates the high electronic conductivity of carbon nanoflakes(CNFs)and the high catalytic activity of Co3 O4 nanosheets on carbon cloth(CC).Due to the synergistic effect of two differently featured components,the hybrid nanoarrays(Co3 O4-CNF@CC)achieve a high reversible capacity of3.14 mA h cm-2 that cannot be achieved by only single components.Further,CNFs grown on CC induce the three-dimensionally distributed growth of ultrafine Co3 O4 nanosheets to enable the efficient utilization of catalysts.Thus,with the high catalytic efficiency,hybrid Co3 O4-CNF@CC also achieves a more prolonged cycling life than pristine TMO nanoarrays.The present work provides a new strategy for improving the performance of nanoarray oxygen electrodes via the hybrid architecture design that integrates the intrinsic properties of each component and induces the three-dimensional distribution of catalysts.
基金supported by the Key Program of Equipment PreResearch Foundation of China(6140721020103)the National Basic Research Program of China(973 Program)(2013CB934001)the National Natural Science Foundation of China(51074011 and51274017)
文摘Two shapes of Co_3O_4 nanoarrays(i.e., nanosheets, nanowires) with different densities of exposed catalytic active sites were synthesized through a facile hydrothermal method on Ni foam substrates and tested as the binder/carbon free and free-standing cathodes for Li–O_2 batteries. Particularly, the single crystalline feature of Co_3O_4 nanosheets with a predominant high reactivity {112} exposed crystal plane and hierarchical porous nanostructure displayed better catalytic performance for both oxygen reduction reaction(during discharge process) and oxygen evolution reaction(during charge process). Li–O_2 battery with Co_3O_4 nanosheets cathode exhibited a higher discharge specific capacity(965 m Ah g^(-1)), lower discharge/charge over-potential and better cycling performance over 63 cycles at 100 mA g^(-1) with the specific capacity limited at 300 mAh g^(-1). The superior catalytic performance of Co_3O_4 nanosheets cathode is ascribed to the enlarging specific area and increasing the exposed Co^(3+) catalytic active sites within predominant {112} crystal plane which plays the key role in determining the adsorption energy for the reactants, enabling high round-trip efficiency and cyclic life.
基金supported by the Fundamental Research Funds for the Central Universities(DUT21LK34)Natural Science Foundation of Liaoning Province(2020-MS-113).
文摘Rational design of oxygen evolution reaction(OER)catalysts at low cost would greatly benefit the economy.Taking advantage of earth-abundant elements Si,Co and Ni,we produce a unique-structure where cobalt-nickel silicate hydroxide[Co_(2.5)Ni_(0.5)Si_(2)O_(5)(OH)_(4)]is vertically grown on a reduced graphene oxide(rGO)support(CNS@rGO).This is developed as a low-cost and prospective OER catalyst.Compared to cobalt or nickel silicate hydroxide@rGO(CS@rGO and NS@rGO,respectively)nanoarrays,the bimetal CNS@rGO nanoarray exhibits impressive OER performance with an overpotential of 307 mV@10 mA cm^(-2).This value is higher than that of CS@rGO and NS@rGO.The CNS@rGO nanoarray has an overpotential of 446 mV@100 mA cm^(-2),about 1.4 times that of the commercial RuO_(2)electrocatalyst.The achieved OER activity is superior to the state-of-the-art metal oxides/hydroxides and their derivatives.The vertically grown nanostructure and optimized metal-support electronic interactions play an indispensable role for OER performance improvement,including a fast electron transfer pathway,short proton/electron diffusion distance,more active metal centers,as well as optimized dualatomic electron density.Taking advantage of interlay chemical regulation and the in-situ growth method,the advanced-structural CNS@rGO nanoarrays provide a new horizon to the rational and flexible design of efficient and promising OER electrocatalysts.
基金Funded by the National Natural Science Foundation of China (Nos. 22075219 and 51972257)the Fundamental Research Funds for the Central Universities (WUT:2021IA002)the National Key Research Program of China (No. 2016YFA0202602)。
文摘We propose a facile facet regulation enabled by nanoarray architecture to achieve a high faradic efficiency of Fe_(2)O_(3) catalyst for NRR. The a-Fe_(2)O_(3) nanorod arrays (NAs) were directly grown on carbon cloth (CC) with specific (104) facet exposure. The highly exposed (104) facets provide abundant unsaturated Fe atoms with dangling bonds as nitrogen reduction reaction catalytically active sites. In addition, the NAs architecture enables the enhanced electrochemical surface area (ECSA) to fully manifest the active sites and maintain the mass diffusion. Thus, the selectively exposed (104) facets coupled with the high ECSA of NAs architecture achieve a high FE of 14.89% and a high yield rate of 17.28 μg h^(-1) cm^(-2). This work presents an effective strategy to develop highly efficient catalytic electrodes for electrochemical NRR via facet regulation and nanoarray architecture.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFA0303600)the National Natural Science Foundation of China(Grant Nos.11974253 and 11774248)。
文摘We study the plasmonic properties of hybrid nanostructures consisting of double vacancy defected graphene(DVDGr)and metallic nanoarrays using the time-dependent density functional theory. It is found that DVDGr with pure and mixed noble/transition-metal nanoarrays can produce a stronger light absorption due to the coherent resonance of plasmons than graphene nanostructures. Comparing with the mixed Au/Pd nanoarrays, pure Au nanoarrays have stronger plasmonic enhancement. Furthermore, harmonics from the hybrid nanostructures exposed to the combination of lasers ranged from ultraviolet to infrared and a controlling pulse are investigated theoretically. The harmonic plateau can be broadened significantly and the energy of harmonic spectra is dramatically extended by the controlling pulse. Thus, it is possible to tune the width and intensity of harmonic spectrum to achieve broadband absorption of radiation. The methodology described here not only improves the understanding of the surface plasmon effect used in a DVDGr-metal optoelectronic device but also may be applicable to different optical technologies.
基金This work was financially sup-ported by the National Natural Science Foundation of China(NSFC Nos:22171212,21771140,51771138,51979194)International Corporation Project of Shanghai Committee of Science and Technology by China(No.21160710300)International Exchange Grant(IEC/NSFC/201078)through Royal Society UK and NSFC.
文摘Trifunctional Cu-mesh/Cu_(2)O@FeO nanoarrays heterostructure is designed and fabricated by integrating CuCu_(2)O@FeO nanoarrays onto Cu-mesh(CM)via an in situ growth and phase transformation process.It is successfully applied to efficiently mitigate the antibiotic pollution,including degradation of antibiotics,inactivation of antibiotic-resistant bacteria(ARB),and damage of antibiotics resistance genes(ARGs).Under visible-light irradiation,CM/CuCu_(2)O@FeO nanoarrays exhibit a superior degradation efficiency on antibiotics(e.g.,up to 99%in 25 min for tetracycline hydrochloride,TC),due to the generated reactive oxygen species(ROS),especially the dominant·O^(2−).It can fully inactivate E.coli(HB101)with initial number of~108 CFU mL^(−1) in 10 min,which is mainly attributed to the synergistic effects of 1D nanostructure,dissolved metal ions,and generated ROS.Meanwhile,it is able to damage ARGs after 180 min of photodegradation,including tetA(vs TC)of 3.3 log 10,aphA(vs kanamycin sulfate,KAN)of 3.4 log 10,and tnpA(vs ampicillin,AMP)of 4.4 log 10,respectively.This work explores a green way for treating antibiotic pollution under visible light.
基金supported by the Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008)the National Natural Science Foundation of China(Nos.22469002 and 22304028)Natural Science Foundation of Jilin Province of China(No.20240101098JC).
文摘Simultaneous nitrate reduction and sulfide oxidation reactions(NO_(3)RR and SOR)to generate valuable chemicals represent an appealing strategy for green synthesis;however,the sluggish kinetics seriously hinder their application.Herein,we report that Ni dopants can optimize the electronic structure of MoS_(2),which thus favors the adsorption of reactants/intermediates and reduces the corresponding energy barriers.As a result,the designed catalyst shows a maximal Faradic efficiency of 88.4%and a corresponding yield rate of 66.7μmol·h^(-1)·cm^(-2)for NH3 synthesis,accompanied by a high robustness over 60 h.Besides,it can also trigger the SOR activity with a low potential of 0.105 V vs.reversible hydrogen electrode(RHE)to produce 10 mA·cm^(-2),far smaller than that needed for conventional water oxidation(1.545 V vs.RHE).Accordingly,a coupling system with NO_(3)RR and SOR is constructed for synchronous formation of value-added products on both anode and cathode.This work demonstrates an attractive attempt to construct advanced MoS_(2-)based catalysts towards electrosynthesis.
基金supported by the National Natural Science Foundation of China(Nos.21965035 and 22065034)Sponsored by Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01E36).
文摘Bifunctional catalysts for hydrogen/oxygen evolution reactions(HER/OER)are urgently needed given the bright future of water splitting hydrogen production technology.Here,the self-supporting N and Ce dual-doped NiCoP nanoarrays(denoted N,Ce-NiCoP/NF)grown on Ni foam are successfully constructed.When the N,Ce-NiCoP/NF simultaneously acts as the HER and OER electrodes,the voltages of 1.54 and 2.14 V are obtained for driving 10 and 500 mA·cm^(-2)with a robust durability,and demonstrate its significant potential for practical water electrolysis.According to both experiments and calculations,the electronic structure of NiCoP may be significantly altered by strategically incorporating N and Ce into the lattice,which in turn optimizes the Gibbs free energy of HER/OER intermediates and speeds up the water splitting kinetics.Moreover,the sprout-shaped morphology significantly increases the exposure of active sites and facilitates charge/mass transfer,thereby augmenting catalyst performance.This study offers a potentially effective approach involving the regulation of anion and cation double doping,as well as architectural engineering,for the purpose of designing and optimizing innovative electrocatalysts.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82373833,22177039,and 82304438)the National Key Research and Development Program of China(Grant No.:2021YFC2300400)Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.:2024A1515012204,2022A1515010300,and 2022A1515110618).
文摘Rapid and ultrasensitive detection of pathogen-associated biomarkers is vital for the early diagnosis and therapy of bacterial infections.Herein,we developed a close-packed and ordered Au@AgPt array coupled with a cascade triggering strategy for surface-enhanced Raman scattering(SERS)and colorimetric identification of the Staphylococcus aureus biomarker micrococcal nuclease(MNase)in serum samples.The trimetallic Au@AgPt nanozymes can catalyze the oxidation of 3,3’,5,5’-tetramethylbenzidine(TMB)molecules to SERS-enhanced oxidized TMB(oxTMB),accompanied by the color change from colorless to blue.In the presence of S.aureus,the secreted MNase preferentially cut the nucleobase AT-rich regions of DNA sequences on magnetic beads(MBs)to release alkaline phosphatase(ALP),which subsequently mediated the oxTMB reduction for inducing the colorimetric/SERS signal fade away.Using this“on-to-off”triggering strategy,the target S.aureus can be recorded in a wide linear range with a limit of detection of 38 CFU/mL in the colorimetric mode and 6 CFU/mL in the SERS mode.Meanwhile,the MNase-mediated strategy characterized by high specificity and sensitivity successfully discriminated between patients with sepsis(n=7)and healthy participants(n=3),as well as monitored the prognostic progression of the disease(n=2).Overall,benefiting from highly active and dense“hot spot”substrate,MNase-mediated cascade response strategy,and colorimetric/SERS dual-signal output,this methodology will offer a promising avenue for the early diagnosis of S.aureus infection.
基金supported by the National Key Research and Development Program of China (2018YFA0209600)Shenzhen Peacock Plan (KQTD2016053015544057)Nanshan Pilot Plan (LHTD20170001)
文摘Solar energy driven photoelectrochemical(PEC) water splitting is a clean and powerful approach for renewable hydrogen production. The design and construction of metal oxide based nanoarray photoanodes is one of the promising strategies to make the continuous breakthroughs in solar to hydrogen conversion efficiency of PEC cells owing to their owned several advantages including enhanced reactive surface at the electrode/electrolyte interface, improved light absorption capability, increased charge separation efficiency and direct electron transport pathways. In this Review, we first introduce the structure,work principle and their relevant efficiency calculations of a PEC cell. We then give a summary of the state-of the-art research in the preparation strategies and growth mechanism for the metal oxide based nanoarrays, and some details about the performances of metal oxide based nanoarray photoanodes for PEC water splitting. Finally, we discuss key aspects which should be addressed in continued work on realizing high-efficiency metal oxide based nanoarray photoanodes for PEC solar water splitting systems.
基金supported by the National Natural Science Foundation of China(No.22072015)Shanghai Scientific and Technological Innovation Project(No.18JC1410604).
文摘Industrial-scale ammonia(NH_(3))production mainly relies on the energy-intensive and environmentally unfriendly Haber-Bosch process.Such issue can be avoided by electrocatalytic N_(2) reduction which however suffers from limited current efficiency and NH3 yield.Herein,we demonstrate ambient NH_(3) production via electrochemical nitrite(NO_(2)^(-))reduction catalyzed by a CoP nanoarray on titanium mesh(CoP NA/TM).When tested in 0.1 M PBS(pH=7)containing 500 ppm N0_(2)^(-),such CoP NA/TM is capable of affording a large NH_(3) yield of 2,260.7±51.5μg·h^(-1)·cm^(-2) and a high Faradaic efficiency of 90.0±2.3%at-0.2 V vs.a reversible hydrogen electrode.Density functional theory calculations reveal that the potential-determining step for NO_(2)^(-)reduction over CoP(112)is*NO2→*NO_(2)H.