Atom–nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fine...Atom–nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fineness microcavity,a new proposal is put forward which contains a single two-level atom asymmetrically coupled with two nanowires. Singleemitter manipulation of photonic signals for bilateral coherent incident is clear now, since we specify atomic saturation nonlinearity into three contributions which brings us a new approach to realizing light-controlled-light at weak light and single-atom levels. An efficient optically controllable switch based on self-matching-induced-block and a concise optical transistor are proposed. Our findings show potential applications in full-optical devices.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11864018 and 11574229)the Scientific Research Foundation of Education Department of Jiangxi Province,China(Grant No.GJJ170645)the Doctor Startup Fund of the Natural Science of Jinggangshan University,China(Grant No.JZB16003)
文摘Atom–nanowire coupling system is a promising platform for optical quantum information processing. Unlike the previous designing of optical switch and transistor requiring a dedicated multi-level emitter and high fineness microcavity,a new proposal is put forward which contains a single two-level atom asymmetrically coupled with two nanowires. Singleemitter manipulation of photonic signals for bilateral coherent incident is clear now, since we specify atomic saturation nonlinearity into three contributions which brings us a new approach to realizing light-controlled-light at weak light and single-atom levels. An efficient optically controllable switch based on self-matching-induced-block and a concise optical transistor are proposed. Our findings show potential applications in full-optical devices.