Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,an...Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.展开更多
Silkworm silk fiber is an attractive material owing to its remarkable mechanical characteristics,excellent optical properties,and good biocompatibility and biodegradability.However,nano-processing of the silk fiber is...Silkworm silk fiber is an attractive material owing to its remarkable mechanical characteristics,excellent optical properties,and good biocompatibility and biodegradability.However,nano-processing of the silk fiber is still a challenge limiting its applications in nanoengineering and related fields.Herein,we report localized near-field enhancement-assisted ablation with an ultrafast laser to break this bottleneck.Localized processing of silk fiber,including nano-holing,nano-grooving,and cutting could retain the key molecular structure building blocks and the pristine functionality of the silk fiber.An extremely narrow nanohole with a width of^64 nm was successfully achieved.The processed silk fiber can be used to transfer micro/nanoparticles and drugs,showing potential for biomedical engineering.The processing strategy developed in this study can also be extended to other materials,paving a new way for fabricating functional nanostructures with precisely controlled size and morphology.展开更多
基金supports from National Natural Science Foundation of China (62274138,11904302)Natural Science Foundation of Fujian Province of China (2023J06012)+2 种基金Science and Technology Plan Project in Fujian Province of China (2021H0011)Fujian Province Central Guidance Local Science and Technology Development Fund Project In 2022 (2022L3058)Compound semiconductor technology Collaborative Innovation Platform project of FuXiaQuan National Independent Innovation Demonstration Zone (3502ZCQXT2022005)。
文摘Micro-light-emitting diodes(micro-LEDs)with outstanding performance are promising candidates for next-generation displays.To achieve the application of high-resolution displays such as meta-displays,virtual reality,and wearable electronics,the size of LEDs must be reduced to the micro-scale.Thus,traditional technology cannot meet the demand during the processing of micro-LEDs.Recently,lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing,adjustable energy and speed of the laser beam,no cutting force acting on the devices,high efficiency,and low cost.Herein,we review the techniques and principles of laser-based technologies for micro-LED displays,including chip dicing,geometry shaping,annealing,laserassisted bonding,laser lift-off,defect detection,laser repair,mass transfer,and optimization of quantum dot color conversion films.Moreover,the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.
基金the support from the National Key R&D Program of China(2017YFB1104300,2016YFA0200103 and 2018YFB1107200)the National Program for the Support of Top-notch Young Professionalsthe National Natural Science Foundation of China(51775303)。
文摘Silkworm silk fiber is an attractive material owing to its remarkable mechanical characteristics,excellent optical properties,and good biocompatibility and biodegradability.However,nano-processing of the silk fiber is still a challenge limiting its applications in nanoengineering and related fields.Herein,we report localized near-field enhancement-assisted ablation with an ultrafast laser to break this bottleneck.Localized processing of silk fiber,including nano-holing,nano-grooving,and cutting could retain the key molecular structure building blocks and the pristine functionality of the silk fiber.An extremely narrow nanohole with a width of^64 nm was successfully achieved.The processed silk fiber can be used to transfer micro/nanoparticles and drugs,showing potential for biomedical engineering.The processing strategy developed in this study can also be extended to other materials,paving a new way for fabricating functional nanostructures with precisely controlled size and morphology.