Structured block copolymer(BCP) particles have gained increasing attention due to their potential applications in separation,catalysis, controlled release, and other fields. Three-dimensional(3D) confined assembly has...Structured block copolymer(BCP) particles have gained increasing attention due to their potential applications in separation,catalysis, controlled release, and other fields. Three-dimensional(3D) confined assembly has been proved as a facile yet robust approach for generating BCP particles with controllable shapes and internal structures. In this feature article, we summarized the preparation of structured polymeric particles through 3D confined self-assembly of BCPs. The effects of interfacial interactions, degree of confinement,and additives on the shape and internal structure of BCP microparticles were comprehensively discussed. In addition, we highlighted the recent progress in using disassembly as a route to synthesize colloidal particles with unique structures. Two strategies were introduced in this part:(a) disassembling the discrete domains resulted in mesoporous microparticles;(b) disassembling the continuous domains led to the dissociation of microparticles into micelle-like nano-objects. The applications of the structured colloidal particles in photonic crystals,controlled release, and directed growth of inorganic materials were also presented. Finally, we discussed the current challenges and future opportunities in this promising area.展开更多
A thorough understanding of biological species and emerging nanomaterials requires,among other efforts,their in-depth characterization through optical techniques capable of nanoresolution.Nanoscopy techniques based on...A thorough understanding of biological species and emerging nanomaterials requires,among other efforts,their in-depth characterization through optical techniques capable of nanoresolution.Nanoscopy techniques based on tip-enhanced optical effects have gained tremendous interest over the past years,given their potential to obtain optical information with resolutions limited only by the size of a sharp probe interacting with focused light,irrespective of the illumination wavelength.Although their popularity and number of applications is rising,tip-enhanced nanoscopy(TEN)techniques still largely rely on probes that are not specifically developed for such applications,but for atomic force microscopy.This limits their potential in many regards,e.g.,in terms of signal-to-noise ratio,attainable image quality,or extent of applications.We take the first steps toward next-generation TEN by demonstrating the fabrication and modeling of specialized TEN probes with known optical properties.The proposed framework is highly flexible and can be easily adjusted to be used with diverse TEN techniques,building on various concepts and phenomena,significantly augmenting their function.Probes with known optical properties could potentially enable faster and more accurate imaging via different routes,such as direct signal enhancement or facile and ultrafast optical signal modulation.We consider that the reported development can pave the way for a vast number of novel TEN imaging protocols and applications,given the many advantages that it offers.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51525302 and 51811540404)Program for HUST Academic Frontier Youth Team (No. 2015-01)the Fundamental Research Funds for the Central Universities (No. 2019kfyXJJS077)
文摘Structured block copolymer(BCP) particles have gained increasing attention due to their potential applications in separation,catalysis, controlled release, and other fields. Three-dimensional(3D) confined assembly has been proved as a facile yet robust approach for generating BCP particles with controllable shapes and internal structures. In this feature article, we summarized the preparation of structured polymeric particles through 3D confined self-assembly of BCPs. The effects of interfacial interactions, degree of confinement,and additives on the shape and internal structure of BCP microparticles were comprehensively discussed. In addition, we highlighted the recent progress in using disassembly as a route to synthesize colloidal particles with unique structures. Two strategies were introduced in this part:(a) disassembling the discrete domains resulted in mesoporous microparticles;(b) disassembling the continuous domains led to the dissociation of microparticles into micelle-like nano-objects. The applications of the structured colloidal particles in photonic crystals,controlled release, and directed growth of inorganic materials were also presented. Finally, we discussed the current challenges and future opportunities in this promising area.
基金support of the Romanian Executive Agency for Higher Education,Research,Development and Innovation Funding(Grant Nos.RO-NO-2019-0601 MEDYCONAI and PN-III-P1-1.1-TE-2019-1339 OPTIGAN)the support of Horizon 2020 Attract(Phase 1)via the TEFPLASNOM project.
文摘A thorough understanding of biological species and emerging nanomaterials requires,among other efforts,their in-depth characterization through optical techniques capable of nanoresolution.Nanoscopy techniques based on tip-enhanced optical effects have gained tremendous interest over the past years,given their potential to obtain optical information with resolutions limited only by the size of a sharp probe interacting with focused light,irrespective of the illumination wavelength.Although their popularity and number of applications is rising,tip-enhanced nanoscopy(TEN)techniques still largely rely on probes that are not specifically developed for such applications,but for atomic force microscopy.This limits their potential in many regards,e.g.,in terms of signal-to-noise ratio,attainable image quality,or extent of applications.We take the first steps toward next-generation TEN by demonstrating the fabrication and modeling of specialized TEN probes with known optical properties.The proposed framework is highly flexible and can be easily adjusted to be used with diverse TEN techniques,building on various concepts and phenomena,significantly augmenting their function.Probes with known optical properties could potentially enable faster and more accurate imaging via different routes,such as direct signal enhancement or facile and ultrafast optical signal modulation.We consider that the reported development can pave the way for a vast number of novel TEN imaging protocols and applications,given the many advantages that it offers.