期刊文献+
共找到77,039篇文章
< 1 2 250 >
每页显示 20 50 100
Macro-mechanics and Microstructure of Nanomaterial-modified Geopolymer Concrete: A Comprehensive Review 被引量:1
1
作者 WANG Tao FAN Xiangqian +1 位作者 GAO Changsheng QU Chiyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期204-214,共11页
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu... We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete. 展开更多
关键词 NANOMATERIALS low carbon geopolymer concrete macro-mechanics microstructure
原文传递
Microstructure and Wear/corrosion Resistance of Stainless Steel Laser-alloyed with Mn+W_(2)C, Mn+NiWC and Mn+SiC 被引量:1
2
作者 ZHOU Rui DIAO Xiaogang SUN Yixin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期283-294,共12页
In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powder... In-situ formed high Mn steel coating reinforced by carbides was formed by laser surface alloying(LSA).Laser alloyed layers on 1Cr18Ni9Ti steel with Mn+W_(2)C(specimen A),Mn+NiWC(specimen B)and Mn+SiC(specimen C)powders were fabricated to improve the wear and corrosion behavior of 1Cr18Ni9Ti steel blades in high speed mixers.Microstructure evolution,phases,element distribution,microhardness,wear and corrosion behavior of the laser alloyed layers were investigated.Results indicated that high Mn steel matrix composites with undissolved W_(2)C,WC and other in-situ formed carbides were formed by LSA with Mn+W_(2)C and Mn+NiWC while SiC totally dissolved into the high Mn matrix when adding Mn+SiC.Ni as the binding phase in Ni-WC powder decreased the crack sensitivity of the alloyed layer as compared with the addition of W_(2)C powder.An improvement in average microhardness was achieved in the matrix in specimen A,B and C,with the value of 615,602 and 277 HV_(0.5),while that of the substrate was 212 HV_(0.5).The increase of microhardness,wear and corrosion resistance is highly corelated to microstructure,formed phases,type and content of carbides,micro-hardness and toughness of the alloyed layers. 展开更多
关键词 laser surface alloying stainless steel carbide type microstructure wear and corrosion resistance
原文传递
Effect of Hot Working on Microstructures and Mechanical Properties of Gravity-Cast Al-8.3Zn-3.3Cu-2.2Mg HighStrength Aluminum Alloy 被引量:1
3
作者 Qi Yushi Jin Yu +5 位作者 Wei Fangming Du Lanjun Ren Yan Liang Xueqian Chen Gang Du Zhiming 《稀有金属材料与工程》 北大核心 2025年第2期327-336,共10页
The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal ho... The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal hot extrusion parameters are determined as ingot initial temperature of 380°C and extrusion speed of 3 mm/s.The hot-extruded aluminum alloy after T6 heat treatment presents superior mechanical properties with yield strength of 519.6 MPa,ultimate tensile strength of 582.1 MPa,and elongation of 11.0%.Compared with the properties of gravity-cast and liquid-forged alloys,the yield strength of hot-extruded alloy increases by 30.8%and 4.9%,and the ultimate tensile strength improves by 43.5%and 10.2%,respectively.The significant improvement in tensile strength of the hot-extruded alloys is attributed to the elimination of casting defects and the refinement of matrix grain and eutectic phases.In addition,the hot-extruded alloy demonstrates superior plasticity compared with the liquid-forged alloy.This is because severe plastic deformation occurs during hot extrusion,which effectively breaks and disperses the eutectic phases,facilitating the dissolution and precipitation of the second phases and inhibiting the microcrack initiation. 展开更多
关键词 Al-Zn-Cu-Mg alloy hot extrusion liquid forging mechanical properties microstructure
原文传递
Microstructure Analysis of TC4/Al 6063/Al 7075 Explosive Welded Composite Plate via Multi-scale Simulation and Experiment 被引量:1
4
作者 Zhou Jianan Luo Ning +3 位作者 Liang Hanliang Chen Jinhua Liu Zhibing Zhou Xiaohong 《稀有金属材料与工程》 北大核心 2025年第1期27-38,共12页
Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer ... Because of the challenge of compounding lightweight,high-strength Ti/Al alloys due to their considerable disparity in properties,Al 6063 as intermediate layer was proposed to fabricate TC4/Al 6063/Al 7075 three-layer composite plate by explosive welding.The microscopic properties of each bonding interface were elucidated through field emission scanning electron microscope and electron backscattered diffraction(EBSD).A methodology combining finite element method-smoothed particle hydrodynamics(FEM-SPH)and molecular dynamics(MD)was proposed for the analysis of the forming and evolution characteristics of explosive welding interfaces at multi-scale.The results demonstrate that the bonding interface morphologies of TC4/Al 6063 and Al 6063/Al 7075 exhibit a flat and wavy configuration,without discernible defects or cracks.The phenomenon of grain refinement is observed in the vicinity of the two bonding interfaces.Furthermore,the degree of plastic deformation of TC4 and Al 7075 is more pronounced than that of Al 6063 in the intermediate layer.The interface morphology characteristics obtained by FEM-SPH simulation exhibit a high degree of similarity to the experimental results.MD simulations reveal that the diffusion of interfacial elements predominantly occurs during the unloading phase,and the simulated thickness of interfacial diffusion aligns well with experimental outcomes.The introduction of intermediate layer in the explosive welding process can effectively produce high-quality titanium/aluminum alloy composite plates.Furthermore,this approach offers a multi-scale simulation strategy for the study of explosive welding bonding interfaces. 展开更多
关键词 TC4/Al 6063/Al 7075 composite plate explosive welding microstructure analysis multi-scale simulation
原文传递
Laser shock processing of titanium alloys:A critical review on the microstructure evolution and enhanced engineering performance 被引量:2
5
作者 Qian Liu Shuangjie Chu +6 位作者 Xing Zhang Yuqian Wang Haiyan Zhao Bohao Zhou Hao Wang Genbin Wu Bo Mao 《Journal of Materials Science & Technology》 2025年第6期262-291,共30页
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ... Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends. 展开更多
关键词 Laser shock peening Titanium alloys microstructure evolution Mechanical properties
原文传递
Mechanical properties and microstructure evolution of 1800 MPa grade low alloy ultrahigh strength steel during quenching and tempering process 被引量:1
6
作者 Tong Wang Yang-xin Wang +2 位作者 Chun-dong Hu Peng-min Cao Han Dong 《Journal of Iron and Steel Research International》 2025年第6期1691-1700,共10页
The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase preci... The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control. 展开更多
关键词 STRENGTH TOUGHNESS CARBIDE microstructure Evolution mechanism
原文传递
Influence of Hot Isostatic Pressing Temperature on Microstructure and Mechanical Properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si Alloy 被引量:2
7
作者 X.W.Shang Z.G.Lu +1 位作者 R.P.Guo L.Xu 《Acta Metallurgica Sinica(English Letters)》 2025年第4期627-641,共15页
Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prep... Hot isostatic pressing (HIP) temperature has a significant impact on the service performance of powder metallurgy titanium alloys. In this study, a high-temperature titanium alloy, Ti-6.5Al-3.5Mo-1.5Zr-0.3Si, was prepared under different HIP temperatures (880–1000℃), and the microstructural evolution and mechanical properties were systematically investigated. The results demonstrated that the HIPed alloys were predominantly composed of more than 80 vol.% α phase and a small amount of β phase, and their phase compositions were basically unaffected by the HIP temperatures. Under the typical single-temperature-maintained HIP (STM-HIP) regime, the microstructure of alloy significantly coarsened as the HIP temperature increased, and the alloy strength exhibited an obvious linear negative correlation with the HIP temperature. On the basis of Hall–Petch relation, the prediction model of grain size was established, and the mathematical equation between HIP temperature and grain size (d=M(T_(HIP-N)^(-2))) was deduced. Furthermore, a possible evolution mechanism of microstructure was proposed, which could be divided into the decomposition of initial α′ martensite for as-received powder, formation of the globular α grains in prior particle boundaries (PPBs) region, and precipitation of the platelet α grains in non-PPBs region. For these alloys prepared by the dual-temperature-maintained HIP (DTM-HIP) regime, although their tensile properties were comparable to that of alloy prepared by STM-HIP regime with same high-temperature holding stage, higher proportion of globular α grains occurred due to more recrystallization nucleation during the low-temperature holding stage, which probably provided a solution for improving the dynamic service performance of HIPed alloys. 展开更多
关键词 Powder metallurgy Hot isostatic pressing Titanium alloy Mechanical properties microstructure evolution
原文传递
Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays 被引量:2
8
作者 Shuli Wang Xuemin Kong +7 位作者 Siting Cai Yunshu Luo Yuxuan Gu Xiaotong Fan Guolong Chen Xiao Yang Zhong Chen Yue Lin 《Chinese Chemical Letters》 2025年第8期554-559,共6页
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m... Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent. 展开更多
关键词 SOLVENT Perovskite nanocrystal Electrohydrodynamic inkjet printing Color conversion microstructures arrays Micro-LED display
原文传递
Influence of minor cerium addition on microstructure and fluidity of as-cast Al-Cu-Mn-Mg alloy 被引量:1
9
作者 Yishan Wang Yu Bai +3 位作者 Kaixi Jiang Wenxue Fan Puxuan Wang Hai Hao 《Journal of Rare Earths》 2025年第2期377-383,I0006,共8页
Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.Howeve... Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.However,the Al-Cu-Mn-based alloys demonstrate restricted fluidity,leading to casting defects such as shrinkage and incomplete filling.This research investigated the microstructure and fluidity of Al-4.7Cu-1.0Mn-0.5Mg(wt%)alloy with minor cerium(Ce)addition.The as-cast alloys predominantly compriseα-Al matrix,accompanied by the presence of Al_(2)Cu,Al_(6)Mn,and Al_(8)Cu_(4)Ce phases.The influence of adding Ce on the fluidity of the Al-4.7Cu-1.0Mn-0.5Mg alloy was investigated using a trispiral fluidity test mold in this research.The findings suggest that the addition of Ce within the range of 0.1 wt%to 0.5 wt%in the Al-4.7Cu-1.0Mn-0.5Mg alloy results in an enhancement in fluidity.Specifically,the alloy containing 0.4 wt%Ce exhibits a significant increase in fluidity distance,from 349.7 to 485.7 mm.This improvement can be attributed to the reduction in viscosity,the refinement of secondary dendrite arm spacing,and the modification of secondary phase particles.However,a higher concentration of Ce leads to a decrease in fluidity length,potentially due to the formation of Al_(8)Cu_(4)Ce. 展开更多
关键词 Al-Cu-Mn-Mg alloy Rare earths Ce addition microstructure FLUIDITY
原文传递
Microstructures,mechanical properties,and strengthening mechanisms of the(NbMoTa)_(100−x)C_(x) refractory medium-entropy alloys 被引量:1
10
作者 Xueqian Gou Ruqing Cao +2 位作者 Weihua Zhou Zheling Shen Yi Li 《Journal of Materials Science & Technology》 2025年第11期105-119,共15页
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni... Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs. 展开更多
关键词 Refractory medium-entropy alloys Carbon microstructureS Mechanical properties Strengthening mechanisms
原文传递
Advances in electrolytic copper foils:fabrication,microstructure,and mechanical properties 被引量:1
11
作者 Long-Long Lu Hai-Tao Liu +8 位作者 Zhao-Dong Wang Qiong-Qiong Lu Yan-Jun Zhou Fei Zhou Yan-Min Zhang Wei-Wei Lu Bin Yang Qian-Qian Zhu Ke-Xing Song 《Rare Metals》 2025年第2期757-792,共36页
Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of L... Electrolytic copper foil has gained significant attention as an essential component in lithium-ion batteries(LIBs),printed circuit boards(PCBs),and chip packaging substrates(CPSs)applications.With the advancement of LIBs towards higher energy densities and the increasing density of electronic components on circuits,copper foil is required to have demanding properties,such as extremely thin thickness and extremely high tensile strength.This comprehensive review firstly summarizes recent progress on the fabrication of electrolytic copper foil,and the effects of process parameters,cathode substrate,and additives on the electrodeposition behavior,microstructure,and properties of copper foil are discussed in detail.Then the regulation strategies of mechanical properties of electrolytic copper foil are also summarized,including the formation of nanotwins and texture.Furthermore,the recent advances in novel electrolytic copper foils,such as composite foils and extra-thin copper foils,are also overviewed.Lastly,the remaining challenges and perspectives on the further development of electrolytic copper foils are presented. 展开更多
关键词 Electrolytic copper foil Fabrication processes ELECTRODEPOSITION microstructure Mechanical properties
原文传递
Microstructure and wear property of laser cladded WC particles reinforced CoCrFeNiMo composite coatings on Cr 12 MoV steel 被引量:1
12
作者 LIU Xing-yi YANG Xiao +6 位作者 CHEN Zu-bin GUO Chun-huan LI Hai-xin YANG Zhen-lin DONG Tao JIANG Feng-chun QIAO Zhu-hui 《Journal of Central South University》 2025年第1期49-70,共22页
WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content o... WC particles reinforced CoCrFeNiMo high-entropy alloy(HEA)composite coatings were prepared on Cr12MoV steel successfully by laser cladding technology to improve the wear resistance of substrates.Effect of WC content on microstructure and wear property of the composite coatings was studied in detail.Large numbers of carbides with four main types:primary carbide crystals,eutectic structures,massive crystals growing along the periphery of the remaining WC particles and incompletely fused WC particles,were found to exist in the WC/CoCrFeNiMo composite coatings.With increasing WC content,the microhardness of coatings is gradually improved while the average friction coefficients follow the opposite trend due to solid solution strengthening and second phase strengthening effect.The maximum microhardness and minimum friction coefficient are HV_(0.2)689.7 and 0.72,respectively,for the composite coating with 30 wt.%WC,the wear resistance of the substrate is improved significantly,the wear mechanisms are spalling wear and abrasive wear due to their high microhardness. 展开更多
关键词 laser cladding CoCrFeNiMo coating WC particles microstructure wear resistance
在线阅读 下载PDF
Effect of Sn content on microstructure and mechanical properties of BAg5CuZn-0.3 wt.%La brazing material 被引量:1
13
作者 Chenyu Shao Dan Shao +5 位作者 Cheng Xiong Junxian Xu Yuhai Zhang Shun Guo Jie Zhou Yinan Li 《China Welding》 2025年第2期149-158,共10页
This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential ther... This article studies the effects of different Sn contents on the melting characteristics,microstructure,and mechanical properties of brazed joints of low-silver BAg5CuZn-0.3 wt.%La brazing material.A differential thermal analyzer(HCR-1)was used to measure the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La-xSn brazing material.The results show that the addition of Sn element effect-ively reduces the solid-liquidus temperature of BAg5CuZn-0.3 wt.%La brazing material.Microstructural characterization was con-ducted using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffraction(XRD),etc.Analysis re-veals that progressive aggregation and precipitation of Cu-Sn intermetallic compounds occur with increasing Sn content,leading to microstructural coarsening.Notably,severe grain coarsening is observed when the Sn content reaches 4 wt.%.Shear testing of the BAg5CuZn-0.3 wt.%La-xSn brazing joints reveals a non-monotonic trend in joint strength:as Sn content increases,the shear strength initially improves but subsequently deteriorates after reaching an optimal value. 展开更多
关键词 Ag-based brazing material microstructure Shear strength Melting characteristics Mechanical properties
在线阅读 下载PDF
Densification,microstructure,mechanical properties,and thermal stability of high-strength Ti-modified Al-Si-Mg-Zr aluminum alloy fabricated by laser-powder bed fusion 被引量:1
14
作者 Yaoxiang Geng Zhifa Shan +2 位作者 Jiaming Zhang Tianshuo Wei Zhijie Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第10期2547-2559,共13页
Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion... Micrometer-sized,irregularly shaped Ti particles(0.5wt%and 1.0wt%)were mixed with an Al-Si-Mg-Zr matrix powder,and a novel Ti-modified Al-Si-Mg-Zr aluminum alloy was subsequently fabricated via laser-powder bed fusion(L-PBF).The results demonstrated that the introduction of Ti particles promoted the formation of near-fully equiaxed grains in the alloy owing to the strong grain refinement of the primary(Al,Si)3(Ti,Zr)nanoparticles.Furthermore,the presence of(Al,Si)3(Ti,Zr)nanoparticles inhibited the decomposition of Si-rich cell boundaries and the precipitation of Si nanoparticles in theα-Al cells.The ultimate tensile strength(UTS),yield strength(YS),and elongation of the asbuilt 0.5wt%Ti(0.5Ti)alloy were(468±11),(350±1)MPa,and(10.0±1.4)%,respectively,which are comparable to those of the L-PBF Al-Si-Mg-Zr matrix alloy and significantly higher than those of traditional L-PBF Al-Si-Mg alloys.After direct aging treatment at 150°C,the precipitation of secondary nanoparticles notably enhanced the strength of the 0.5Ti alloy.Specifically,the 0.5Ti alloy achieved a maximum UTS of(479±11)MPa and YS of(376±10)MPa.At 250°C,the YS of the L-PBF Ti/Al-Si-Mg-Zr alloy was higher than that of the L-PBF Al-Si-Mg-Zr matrix alloy due to the retention of Si-rich cell boundaries,indicating a higher thermal stability.As the aging temperature was increased to 300°C,the dissolution of Si-rich cell boundaries,desolvation of solid-solution elements,and coarsening of nanoprecipitates led to a decrease in the UTS and YS of the alloy to below 300 and 200 MPa,respectively.However,the elongation increased significantly. 展开更多
关键词 laser-powder bed fusion Ti-modified Al-Si-Mg-Zr alloy microstructure mechanical property thermal stability
在线阅读 下载PDF
Microstructure and mechanical properties with different sintering temperature of AZ91D alloy 被引量:1
15
作者 Limin Li Huanqing Li +4 位作者 Pengya Lei Wei Liu Liwen Chen Hua Hou Yuhong Zhao 《Journal of Magnesium and Alloys》 2025年第2期697-708,共12页
The regulation of sintering temperature in spark plasma sintering enables the achievement of grain refinement,phase control,and performance enhancement in the preparation of AZ91D magnesium alloy.This study investigat... The regulation of sintering temperature in spark plasma sintering enables the achievement of grain refinement,phase control,and performance enhancement in the preparation of AZ91D magnesium alloy.This study investigates the influence of sintering temperature on microstructural evolution and mechanical properties of the AZ91D alloy.Microstructural analysis was conducted using scanning electron microscopy,electron backscatter diffraction,and X-ray diffraction.Microscopic structures and mechanical behaviors were examined through hardness and tensile tests.Elevated sintering temperatures resulted in reduced secondary phase content,leading to a decrease in mechanical performance.The alloy exhibited optimal mechanical properties at 320℃.The nanoparticle coarsening process and particle evolution during sintering were simulated using phase field methods.By optimizing the sintering temperature,precise control over microstructural and textural evolution can be achieved,facilitating the attainment of desired hardness levels and mechanical properties. 展开更多
关键词 AZ91D alloy Mechanical properties Phase-field method microstructure evolution
在线阅读 下载PDF
Microstructure characteristics and corrosion behavior of metal inert gas welded dissimilar joints of 6005A modified by Sc and 5083 alloys 被引量:1
16
作者 Guo-fu XU Liang LIU +7 位作者 Ying DENG Yu ZENG Jun-chang CAO Lei TANG Xiao-yan PENG Jia-qi DUAN Mei-chan LIANG Qing-lin PAN 《Transactions of Nonferrous Metals Society of China》 2025年第1期60-76,共17页
The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion... The corrosion behavior and microstructure characteristics of metal inert gas(MIG)welded dissimilar joints of the 6005A alloy modified with Sc(designated as 6005A+Sc)and the 5083 alloy were investigated using corrosion tests and microscopy techniques.Results show that the dissimilar joints exhibit strong stress corrosion cracking(SCC)resistance,maintaining substantial strength during slow strain rate tensile tests.Notably,the heat-affected zone(HAZ)and base metal(BM)on the 6005A+Sc side show superior performance in terms of inter-granular corrosion(IGC)and exfoliation corrosion(EXCO)compared to the corresponding zones on the 5083 side.The lower corrosion resistance of the 5083-BM and the 5083-HAZ can be attributed to the presence of numerous Al_(2)Mg_(3)phases and micro-scaled Al_(6)(Mn,Fe)intermetallics,mainly distributed along the rolling direction.Conversely,the enhanced corrosion resistance of the 6005A+Sc-BM and the 6005A+Sc-HAZ can be attributed to the discontinuously distributed grain boundary precipitates(β-Mg_(2)Si),the smaller grain size,and the reduced corrosive current density. 展开更多
关键词 metal inert gas welding dissimilar joint aluminum alloy corrosion microstructure
在线阅读 下载PDF
Solidification modes and delta-ferrite of two types of 316L stainless steels:a combination of as-cast microstructure and HT-CLSM research 被引量:2
17
作者 Yang Wang Chao Chen +5 位作者 Xiao-yu Yang Zheng-rui Zhang Jian Wang Zhou Li Lei Chen Wang-zhong Mu 《Journal of Iron and Steel Research International》 2025年第2期426-436,共11页
In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The ... In 316L austenitic stainless steel,the presence of ferrite phase severely affects the non-magnetic properties.316L austenitic stainless steel with low-alloy type(L-316L)and high-alloy type(H-316L)has been studied.The microstructure and solidification kinetics of the two as-cast grades were in situ observed by high temperature confocal laser scanning microscopy(HT-CLSM).There are significant differences in the as-cast microstructures of the two 316L stainless steel compositions.In L-316L steel,ferrite morphology appears as the short rods with a ferrite content of 6.98%,forming a dual-phase microstructure consisting of austenite and ferrite.Conversely,in H-316L steel,the ferrite appears as discontinuous network structures with a content of 4.41%,forming a microstructure composed of austenite and sigma(σ)phase.The alloying elements in H-316L steel exhibit a complex distribution,with Ni and Mo enriching at the austenite grain boundaries.HT-CLSM experiments provide the real-time observation of the solidification processes of both 316L specimens and reveal distinct solidification modes:L-316L steel solidifies in an FA mode,whereas H-316L steel solidifies in an AF mode.These differences result in ferrite and austenite predominantly serving as the nucleation and growth phases,respectively.The solidification mode observed by experiments is similar to the thermodynamic calculation results.The L-316L steel solidified in the FA mode and showed minimal element segregation,which lead to a direct transformation of ferrite to austenite phase(δ→γ)during phase transformation after solidification.Besides,the H-316L steel solidified in the AF mode and showed severe element segregation,which lead to Mo enrichment at grain boundaries and transformation of ferrite into sigma and austenite phases through the eutectoid reaction(δ→σ+γ). 展开更多
关键词 316L austenitic stainless steel As-cast microstructure High-temperature confocal laser scanning microscopy Solidification mode FERRITE Characterization
原文传递
Regulation of crystal and microstructures of RETaO_(4)(RE=Nd,Sm,Gd.Ho,Er)powders synthesized via co-precipitation 被引量:1
18
作者 Jiang Tian Lin Chen +10 位作者 Xunlei Chen Keren Luo Baihui Li Di Zhang Meng Wang Bing Xu Zhiyi Ren Shixiao Yan Xiaoliang Sun Chi Liu Jing Feng 《Journal of Rare Earths》 2025年第6期1246-1255,I0006,共11页
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research... Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders. 展开更多
关键词 Rare earth tantalates Chemical co-precipitation method Rare earths Crystal structures microstructureS Annealingtemperatures
原文传递
Microstructure and mechanical properties of extruded Mg-Sn alloys with a heterogeneous grain structure 被引量:1
19
作者 Lin Tong Jing Jiang +4 位作者 Guangli Bi Yuandong Li Tijun Chen Xiaoru Zhang Daqing Fang 《Journal of Magnesium and Alloys》 2025年第6期2825-2844,共20页
The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained ... The high-strength Mg-7Sn alloys(wt.%)with a heterogeneous grain structure were prepared by low-temperature extrusion(230°C)with the extrusion ratio of 9:1(9E230)and 17:1(17E230).The two extruded alloys contained fine dynamic recrystallization(DRX)grains(FG)and coarse un DRX grains(CG).The difference in deformability between CG and FG leads to the formation of heterogeneous grain structure.The average grain size and basal texture intensities increased while the volume fraction of CG decreased with increasing extrusion ratio.Tensile testing results indicated that the extruded 17E230 alloy exhibited higher tensile strengths than 9E230 alloy,whose tensile yield strength(σ_(0.2)),ultimate tensile strengths(σ_(b)),and elongation to failure(ε_(f))were 231.1 MPa,319.5MPa,and 12.54%respectively.The high tensile strengths of the extruded alloy mainly originated from grain refinement,texture strengthening,precipitation strengthening from a great number of nano-scale Mg_(2)Sn phases,solid solution strengthening and hetero-deformation induced(HDI)strengthening,while the good ductility of the alloy was also mainly attributed to grain refinement,activation of the non-basal slip systems and HDI hardening. 展开更多
关键词 Extruded Mg-7Sn alloys HETEROSTRUCTURE Extrusion ratio microstructure Mechanical properties
在线阅读 下载PDF
Microstructure evolution and strengthening mechanism of WE54 magnesium alloy during hard-plate rolling 被引量:1
20
作者 Yan-hui LIU Ming-ming QI +4 位作者 Xin CAO Bing WU Ming LIANG Jian-feng LI Chao LI 《Transactions of Nonferrous Metals Society of China》 2025年第7期2227-2243,共17页
The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-roll... The microstructure evolution and strengthening mechanism of WE54 alloy with different hard-plate rolling(HPR)processes were systematically investigated.The results suggest that the mechanical properties of the as-rolled alloys are significantly enhanced compared to those of the as-cast alloy.When subjected to three rolling passes at 450℃ and 490℃,grain refinement occurs due to dynamic recrystallization.A mixed-grain structure is formed after a single pass rolling with a substantial reduction(65%)at 490℃.The dynamic recrystallization(DRX)mechanism of the alloy during the HPR includes continuous dynamic recrystallization(CDRX),discontinuous dynamic recrystallization(DDRX),and twin-induced recrystallization(TDRX).The WE54 alloy exhibits the highest strength after three passes of HPR at 450℃,with tensile strength and yield strength of 374 and 323 MPa,respectively.The significant improvement in the mechanical properties of the alloy is primarily attributed to fine-grain strengthening,solid solution strengthening,and dislocation strengthening. 展开更多
关键词 WE54 alloy hard-plate rolling(HPR) microstructure mechanical properties strengthening mechanism
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部