In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a ...In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a heterogeneous structure using pre-vulcanized powder rubber to replace traditional fillers.The matrix material is composed of a blend of NR and BR,which is widely used in tire manufacturing.By incorporating pre-vulcanized trans-1,4-poly(isoprene-co-butadiene)(TBIR)rubber powder(pVTPR)with different cross-linking densities and contents,significant improvements in the gas barrier properties and CO_(2)permselectivity of the NR/BR/pVTPR composites were observed.The results indicated that compared to NR/BR/TBIR composites prepared through direct blending of NR,BR,and TBIR,the NR/BR/pVTPR composites exhibited markedly superior gas barrier properties.Increasing the cross-linking density of pVTPR resulted in progressive enhancement of the gas barrier properties of the NR/BR/pVTPR composite.For example,the addition of 20 phr pVTPR with a cross-linking density of 346 mol/m^(3)resulted in a 79%improvement in the oxygen barrier property of NR/BR/pVTPR compared to NR/BR,achieving a value of 5.47×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1).Similarly,the nitrogen barrier property improved by 76%compared to NR/BR,reaching 2.4×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1),which is 28%higher than the conventional inner liner material brominated butyl rubber(BIIR,PN2=3.32×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1)).Owing to its low cost,exceptional gas barrier properties,superior adhesion to various tire components,and co-vulcanization capabilities,the NR/BR/pVTPR composite has emerged as a promising alternative to butyl rubber in the inner liner of tires.Furthermore,by fine-tuning the cross-linking density of pVTPR,the high-gas-barrier NR/BR/pVTPR composites also demonstrated remarkable CO_(2)permselectivity,with a CO_(2)/N2 selectivity of 61.4 and a CO_(2)/O_(2)selectivity of 26.12.This innovation provides a novel strategy for CO_(2)capture and separation,with potential applications in future environmental and industrial processes.The multifunctional NR/BR/pVTPR composite,with its superior gas barrier properties and CO_(2)permselectivity,is expected to contribute to the development of safer,greener,and more cost-effective transportation solutions.展开更多
Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants ...Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants on microstructures and high-temperature mechanical properties of the as-built IN718 composites were investigated.According to statistical results of relative density and unmelted particle area in as-built alloys,the optimal energy of 112 J/mm^(3)was determined.It was observed that the precipitation of the MC carbide was significantly enhanced with the addition of Ti_(2)AlC,restricting the precipitation of the Laves phase.The MC particles were uniformly distributed along the subgrain boundaries,which contributed to the dispersion strengthening.Meanwhile,the MC particles served as nucleation sites for heterogeneous nucleation during the solidification process,facilitating the refinement of columnar and cellular grains.The simulated Scheil-Gulliver curves showed that the precipitation sequence of phases did not change with Ti_(2)AlC inoculants.The as-built 1%Ti_(2)AlC/IN718 sample demonstrated an ultimate tensile strength of 998.78 MPa and an elongation of 18.04%at 650℃,revealing a markedly improved mechanical performance compared with the LPBF-manufactured IN718 alloys.The high-temperature tensile strength of 1%Ti_(2)AlC/IN718 sample increased to 1197.99 MPa by heat treatment.It was suggested that dislocation strengthening and ordered strengthening were two most important reinforcement mechanisms.展开更多
A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy metho...A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy method.The α-variants get various crystallographic orientations and become discontinuous during vacuum annealing at 700℃.Remarkably,nanoscale phase δ-TiH compound layers are generated between α-laths and β-strips,so that dislocations are piled up at the α/δ/βinterfaces during tensile deformation.This leads to dislocation slips being confined to individual α-laths,with differentslips and particularly pyramidal<c+a>slips being activated.The efficiency of wavy slip is promoted and the work hardening rate is enhanced.Finally,the combined effect of dispersed micro-shear bands and lath distortions is considered contributive for alleviating the stress concentration at grain boundaries,resulting in a high-promising synergy of enhanced ultimate tensile strength of 1080 MPa and good elongation to fracture of 13.6%.展开更多
The rapid advancement of superalloy melting technology has increased the demands on crucible materials.Y_(2)O_(3) is a promising candidate for nickel-based superalloy melting due to its outstanding high-temperature st...The rapid advancement of superalloy melting technology has increased the demands on crucible materials.Y_(2)O_(3) is a promising candidate for nickel-based superalloy melting due to its outstanding high-temperature stability and non-wetting behavior with various alloys.However,its poor sintering performance limits its development.High-density Y_(2)O_(3) ceramics were successfully prepared via pressureless sintering at 1600℃ in a carbon-embedded atmosphere with talc powder as an additive.The resulting ceramics achieved optimal properties,including a bulk density of 4.27 g cm^(−3),apparent porosity of 1.1%,and cold compressive strength of 311.27 MPa.The talc powder introduced a liquid phase during sintering,which accelerated mass transfer and promoted grain growth and densification.During cooling,this liquid phase remained at the grain boundaries and acted as an intergranular bonding agent,strengthening grain cohesion.Nevertheless,excessive liquid phase hindered grain growth,negatively affecting sintering.Additionally,the extremely low porosity and the formation of the Mg_(2)SiO_(4) phase reduced the residual strength retention ratio of the Y_(2)O_(3) ceramic after thermal shock.展开更多
To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were ...To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.展开更多
Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmis...Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.展开更多
α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ...α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.展开更多
Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granu...Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.展开更多
目的:基于网络药理学和分子对接技术探究不忘散加味方治疗2型糖尿病(type 2 diabetes mellitus,T2DM)轻度认知障碍的作用机制。方法:利用中药系统药理学数据库与分析平台(traditional Chinese medicine systems pharmacology database a...目的:基于网络药理学和分子对接技术探究不忘散加味方治疗2型糖尿病(type 2 diabetes mellitus,T2DM)轻度认知障碍的作用机制。方法:利用中药系统药理学数据库与分析平台(traditional Chinese medicine systems pharmacology database and analysis platform,TCMSP)和BATMAN-TCM数据库筛选不忘散加味方的药物成分及潜在作用靶点;通过在线人类孟德尔遗传数据库(online mendelian inheritance in man,OMIM)及人类基因数据库(the human gene database,GeneCards)筛选疾病相关靶点,获取疾病与药物交集靶点,得出不忘散加味方治疗T2DM轻度认知障碍的潜在作用靶点;通过Cytoscape 3.8.2软件构建“药物-成分-作用靶点”网络;将疾病与药物交集靶点导入STRING数据库,构建蛋白-蛋白互作(proteinprotein interactions,PPI)网络,筛选核心靶点;借助核心靶基因导入基因功能注释数据库(the database for annotation visualization and integrated discovery,DAVID)对疾病与药物交集靶点做基因本体论(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析;通过AutoDock Vina软件对筛选出的关键成分与靶点进行分子对接,验证药物与疾病的作用关系。结果:共筛选得到不忘散加味方活性成分135个,不忘散加味方与T2DM轻度认知障碍交集靶点293个;获得槲皮素、β-谷甾醇、山柰酚、木犀草素、豆甾醇等关键活性化合物;筛选得到TP53、IL-6、AKT1、TNF、STAT3、IL-1β、EGFR、JUN、INS、BCL2等核心靶点;潜在作用靶点主要富集在脂质与动脉粥样硬化通路、糖尿病并发症AGE-RAGE、流体剪切应力与动脉粥样硬化通路等。结论:不忘散加味存在多种活性成分,可能通过多个潜在靶点、多条信号通路发挥对T2DM合并轻度认知障碍的治疗作用。展开更多
Different lanthanide ions (Yb3+/Ho3+/Er3+/Tm3+) codoped KGd(WO4)2 phosphors were prepared by high-temperature solid-state reaction. The upconversion luminescence properties of two-ion and three-ion co-doped KGd(WO4)2 ...Different lanthanide ions (Yb3+/Ho3+/Er3+/Tm3+) codoped KGd(WO4)2 phosphors were prepared by high-temperature solid-state reaction. The upconversion luminescence properties of two-ion and three-ion co-doped KGd(WO4)2 phosphors were investigated in detail. The concentration quenching effect of the two-ion co-doped KGd(WO4)2 phosphors was studied, and the optimum concentration of Ho3+, Er3+ and Tm3+ are 2 mol.%, 2 mol.% and 3 mol.%, respectively. The Yb3+/Ho3+/Tm3+ co-doped KGd(WO4)2 sample is the best white ...展开更多
The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that...The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.展开更多
A simple method to synthesize high-content ternary carbide Ti3AlC2 nanoparticles from Ti,Al,and C starting elemental powders without ball milling in NaCl–KCl molten salt was reported.The effects of mass ratio of the ...A simple method to synthesize high-content ternary carbide Ti3AlC2 nanoparticles from Ti,Al,and C starting elemental powders without ball milling in NaCl–KCl molten salt was reported.The effects of mass ratio of the salt to starting materials,temperature,reaction time,and Al molar ratio on preparation of Ti3AlC2 were investigated.The Ti3AlC2 formation is dramatically influenced by temperature and mass ratio of the salt to raw materials:a higher temperature and higher mass ratio of the salt to raw materials are more preferable for Ti3AlC2 powder formation.Homogenous Ti3AlC2 powder with particle size of■nm is synthesized by 3Ti/Al/2C starting elemental powders in NaCl–KCl molten salt at 900℃for 10 h,950℃for 5h,or 1000℃for 2h,respectively,when the mass ratio of the salt to 3Ti/Al/2C starting materials is 10:1.展开更多
This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and redu...This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and reduce the agglomeration of powders. Also, the reflex spectra of nano-scale powders with different grain size were studied. It tvas found that the wave length and width of reflex spectra are connected with the grain size of nano-TiO2 powders展开更多
The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with t...The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-2OCu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures. :~展开更多
W-2 wt.%Y2O3 composite material with uniform distribution of yttrium element was fabricated through processes of mechanical alloying (MA) and spark plasma sintering (SPS). The relevant productions were characteriz...W-2 wt.%Y2O3 composite material with uniform distribution of yttrium element was fabricated through processes of mechanical alloying (MA) and spark plasma sintering (SPS). The relevant productions were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The XRD showed that the W-2 wt.%Y2O3 composite powder, including tungsten matrix and Y2O3 particles, was refined to nanometer sizes during the MA process. The SEM and TEM micrographs showed that the MA produced composite powder presented a lamellar morphology and contained many dislocations and microcracks. The EDS showed that the Y and O elements were uniformly distributed in the W matrix after mechanically alloying for 15 h. The W-2 wt.%Y2O3 composite material with uniform distribution of yttrium was obtained by sintering of the MA produced composite powder.展开更多
基金supported by the National Key Research and Development Program of China (No. 2022YFB3704700(2022YFB3704702))the National Natural Science Foundation of China (No. 52473096)+1 种基金Major Scientific and Technological Innovation Project of Shandong Province (No. 2021CXGC010901)Taishan Scholar Program
文摘In this study,a novel cost-effective methodology was developed to enhance the gas barrier properties and permselectivity of unfilled natural rubber(NR)/polybutadiene rubber(BR)composites through the construction of a heterogeneous structure using pre-vulcanized powder rubber to replace traditional fillers.The matrix material is composed of a blend of NR and BR,which is widely used in tire manufacturing.By incorporating pre-vulcanized trans-1,4-poly(isoprene-co-butadiene)(TBIR)rubber powder(pVTPR)with different cross-linking densities and contents,significant improvements in the gas barrier properties and CO_(2)permselectivity of the NR/BR/pVTPR composites were observed.The results indicated that compared to NR/BR/TBIR composites prepared through direct blending of NR,BR,and TBIR,the NR/BR/pVTPR composites exhibited markedly superior gas barrier properties.Increasing the cross-linking density of pVTPR resulted in progressive enhancement of the gas barrier properties of the NR/BR/pVTPR composite.For example,the addition of 20 phr pVTPR with a cross-linking density of 346 mol/m^(3)resulted in a 79%improvement in the oxygen barrier property of NR/BR/pVTPR compared to NR/BR,achieving a value of 5.47×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1).Similarly,the nitrogen barrier property improved by 76%compared to NR/BR,reaching 2.4×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1),which is 28%higher than the conventional inner liner material brominated butyl rubber(BIIR,PN2=3.32×10^(-14)cm^(3)·cm·cm^(-2)·s^(-1)·Pa^(-1)).Owing to its low cost,exceptional gas barrier properties,superior adhesion to various tire components,and co-vulcanization capabilities,the NR/BR/pVTPR composite has emerged as a promising alternative to butyl rubber in the inner liner of tires.Furthermore,by fine-tuning the cross-linking density of pVTPR,the high-gas-barrier NR/BR/pVTPR composites also demonstrated remarkable CO_(2)permselectivity,with a CO_(2)/N2 selectivity of 61.4 and a CO_(2)/O_(2)selectivity of 26.12.This innovation provides a novel strategy for CO_(2)capture and separation,with potential applications in future environmental and industrial processes.The multifunctional NR/BR/pVTPR composite,with its superior gas barrier properties and CO_(2)permselectivity,is expected to contribute to the development of safer,greener,and more cost-effective transportation solutions.
基金supported by the National Natural Science Foundation of China(Nos.52374396 and 52122409).
文摘Improving the high-temperature performance of Inconel 718(IN718)alloys manufactured via laser powder bed fusion(LPBF)has been the most concerned issue in the industry.In this study,the effects of Ti_(2)AlC inoculants on microstructures and high-temperature mechanical properties of the as-built IN718 composites were investigated.According to statistical results of relative density and unmelted particle area in as-built alloys,the optimal energy of 112 J/mm^(3)was determined.It was observed that the precipitation of the MC carbide was significantly enhanced with the addition of Ti_(2)AlC,restricting the precipitation of the Laves phase.The MC particles were uniformly distributed along the subgrain boundaries,which contributed to the dispersion strengthening.Meanwhile,the MC particles served as nucleation sites for heterogeneous nucleation during the solidification process,facilitating the refinement of columnar and cellular grains.The simulated Scheil-Gulliver curves showed that the precipitation sequence of phases did not change with Ti_(2)AlC inoculants.The as-built 1%Ti_(2)AlC/IN718 sample demonstrated an ultimate tensile strength of 998.78 MPa and an elongation of 18.04%at 650℃,revealing a markedly improved mechanical performance compared with the LPBF-manufactured IN718 alloys.The high-temperature tensile strength of 1%Ti_(2)AlC/IN718 sample increased to 1197.99 MPa by heat treatment.It was suggested that dislocation strengthening and ordered strengthening were two most important reinforcement mechanisms.
基金financially supported by the National Natural Science Foundation of China(Nos.52301145,52275329)the Applied Basic Research Program of Liaoning Province,China(No.2023JH2/101300158)+1 种基金the Fundamental Research Fund for the Central Universities,China(No.N2202010)the Key Research Programs of High Education Institutions in Henan Province,China(No.24A430017).
文摘A unique discontinuous lamellar microstructure of titanium alloys consisting of lamellar colonies at prior β-Ti grain boundaries and internal interwoven α-laths is prepared by a TiH_(2)-based powder metallurgy method.The α-variants get various crystallographic orientations and become discontinuous during vacuum annealing at 700℃.Remarkably,nanoscale phase δ-TiH compound layers are generated between α-laths and β-strips,so that dislocations are piled up at the α/δ/βinterfaces during tensile deformation.This leads to dislocation slips being confined to individual α-laths,with differentslips and particularly pyramidal<c+a>slips being activated.The efficiency of wavy slip is promoted and the work hardening rate is enhanced.Finally,the combined effect of dispersed micro-shear bands and lath distortions is considered contributive for alleviating the stress concentration at grain boundaries,resulting in a high-promising synergy of enhanced ultimate tensile strength of 1080 MPa and good elongation to fracture of 13.6%.
基金financially supported by the National Natural Science Foundation of China(No.U21A2057).
文摘The rapid advancement of superalloy melting technology has increased the demands on crucible materials.Y_(2)O_(3) is a promising candidate for nickel-based superalloy melting due to its outstanding high-temperature stability and non-wetting behavior with various alloys.However,its poor sintering performance limits its development.High-density Y_(2)O_(3) ceramics were successfully prepared via pressureless sintering at 1600℃ in a carbon-embedded atmosphere with talc powder as an additive.The resulting ceramics achieved optimal properties,including a bulk density of 4.27 g cm^(−3),apparent porosity of 1.1%,and cold compressive strength of 311.27 MPa.The talc powder introduced a liquid phase during sintering,which accelerated mass transfer and promoted grain growth and densification.During cooling,this liquid phase remained at the grain boundaries and acted as an intergranular bonding agent,strengthening grain cohesion.Nevertheless,excessive liquid phase hindered grain growth,negatively affecting sintering.Additionally,the extremely low porosity and the formation of the Mg_(2)SiO_(4) phase reduced the residual strength retention ratio of the Y_(2)O_(3) ceramic after thermal shock.
基金the Scientific Research Fund of Hunan Provincial Education Department(22B0856)the Hengyang"Xiaohe"Science and Technology Talent Special Project([2023]45)+3 种基金the Guidance Plan Project of Hengyang City([2023]40)the National Natural Science Foundation of China(U20A20239)the College Students'Innovation and Entrepreneurship Training Project(S202311528055)the Characteristic Application Discipline of Material Science Engineering in Hunan Province([2022]351).
文摘To solve the problem of poor high-temperature service performance caused by low carbonization of MgO-C refractories,low-carbon MgO–C refractories with excellent thermal shock,oxidation and corrosion resistances were successfully designed by using SiC whiskers as reinforcing phases and introducing micro-Al_(2)O_(3) powders as additives.The results indicated that the addition of micro-Al_(2)O_(3) powders optimized the internal structure of the material,like the columnar β-Si_(3)N_(4) with a stepped distribution and the mosaic structure formed between granular and flaky Mg_(2)SiO_(4),which synergistically strengthened and toughened the material and gave the material excellent mechanical properties and thermal shock resistance.Specifically,the cold modulus of rupture and cold crushing strength after thermal shock were increased by 4.1 and 20.3 MPa,respectively.Moreover,the addition of micro-Al_(2)O_(3) powders promoted the formation of fine particles of Mg_(2)SiO_(4),MgAl_(2)O_(4) and MgO,as well as a dense protective layer of Mg_(2)SiO_(4) in the material under high-temperature environment.Furthermore,spinel and high-temperature solid solution were formed in the corrosion environment.The oxidation and corrosion resistances were greatly improved by 41%and 15%,respectively.
基金Project (NS2010153) supported by Nanjing University of Aeronautics and Astronautics Research Funding, ChinaProject (BE2009130) supported by Jiangsu Key Technology R&D Program, China
文摘Using Ti powder as reagent, TiO 2 nanoneedle/nanoribbon spheres were prepared via hydrothermal method in NaOH solution. The samples were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), X-ray diffraction (XRD), and UV-visible light absorption spectrum. The results indicate that the growth orientations of the crystals are influenced by the hydrothermal temperature and NaOH concentration. The diameter of the nanoneedle spheres and nanoribbon spheres (40 50 μm) are almost the same as that of Ti powders. TiO 2 nanoneedle/nanoribbon sphere powders are anatase after heat treatment at 450 °C for 1 h. Furthermore, methyl orange was used as a target molecule to estimate the photocatalytic activity of the specimens. Under the same testing conditions, the photocatalytic activities of the products decrease in the following order: TiO 2 nanoneedle sphere, TiO 2 nanoribbon sphere and P25.
基金Project (2006BAB02B05-04- 01/02) supported by the National Key Technologies R&D Program of China
文摘α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.
基金Projects(51072045,51102074)supported by the National Natural Science Foundation of China
文摘Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated.
文摘目的:基于网络药理学和分子对接技术探究不忘散加味方治疗2型糖尿病(type 2 diabetes mellitus,T2DM)轻度认知障碍的作用机制。方法:利用中药系统药理学数据库与分析平台(traditional Chinese medicine systems pharmacology database and analysis platform,TCMSP)和BATMAN-TCM数据库筛选不忘散加味方的药物成分及潜在作用靶点;通过在线人类孟德尔遗传数据库(online mendelian inheritance in man,OMIM)及人类基因数据库(the human gene database,GeneCards)筛选疾病相关靶点,获取疾病与药物交集靶点,得出不忘散加味方治疗T2DM轻度认知障碍的潜在作用靶点;通过Cytoscape 3.8.2软件构建“药物-成分-作用靶点”网络;将疾病与药物交集靶点导入STRING数据库,构建蛋白-蛋白互作(proteinprotein interactions,PPI)网络,筛选核心靶点;借助核心靶基因导入基因功能注释数据库(the database for annotation visualization and integrated discovery,DAVID)对疾病与药物交集靶点做基因本体论(gene ontology,GO)和京都基因与基因组百科全书(kyoto encyclopedia of genes and genomes,KEGG)通路富集分析;通过AutoDock Vina软件对筛选出的关键成分与靶点进行分子对接,验证药物与疾病的作用关系。结果:共筛选得到不忘散加味方活性成分135个,不忘散加味方与T2DM轻度认知障碍交集靶点293个;获得槲皮素、β-谷甾醇、山柰酚、木犀草素、豆甾醇等关键活性化合物;筛选得到TP53、IL-6、AKT1、TNF、STAT3、IL-1β、EGFR、JUN、INS、BCL2等核心靶点;潜在作用靶点主要富集在脂质与动脉粥样硬化通路、糖尿病并发症AGE-RAGE、流体剪切应力与动脉粥样硬化通路等。结论:不忘散加味存在多种活性成分,可能通过多个潜在靶点、多条信号通路发挥对T2DM合并轻度认知障碍的治疗作用。
基金Project supported by the National Natural Science Foundation of China (20876002, 20976002)the Beijing Natural Science Foundation (2091002)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality
文摘Different lanthanide ions (Yb3+/Ho3+/Er3+/Tm3+) codoped KGd(WO4)2 phosphors were prepared by high-temperature solid-state reaction. The upconversion luminescence properties of two-ion and three-ion co-doped KGd(WO4)2 phosphors were investigated in detail. The concentration quenching effect of the two-ion co-doped KGd(WO4)2 phosphors was studied, and the optimum concentration of Ho3+, Er3+ and Tm3+ are 2 mol.%, 2 mol.% and 3 mol.%, respectively. The Yb3+/Ho3+/Tm3+ co-doped KGd(WO4)2 sample is the best white ...
基金Projects(51404183,51504177)supported by the National Natural Science Foundation of China。
文摘The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃.
基金supported financially by the National Natural Science Foundation of China(No.51501205).
文摘A simple method to synthesize high-content ternary carbide Ti3AlC2 nanoparticles from Ti,Al,and C starting elemental powders without ball milling in NaCl–KCl molten salt was reported.The effects of mass ratio of the salt to starting materials,temperature,reaction time,and Al molar ratio on preparation of Ti3AlC2 were investigated.The Ti3AlC2 formation is dramatically influenced by temperature and mass ratio of the salt to raw materials:a higher temperature and higher mass ratio of the salt to raw materials are more preferable for Ti3AlC2 powder formation.Homogenous Ti3AlC2 powder with particle size of■nm is synthesized by 3Ti/Al/2C starting elemental powders in NaCl–KCl molten salt at 900℃for 10 h,950℃for 5h,or 1000℃for 2h,respectively,when the mass ratio of the salt to 3Ti/Al/2C starting materials is 10:1.
文摘This paper reports the preparation of nano-TiO2 (about 10 nm) powder by the method of precipitation. In detail, some breparation conditions were investigated in order to find out how to control the grain size and reduce the agglomeration of powders. Also, the reflex spectra of nano-scale powders with different grain size were studied. It tvas found that the wave length and width of reflex spectra are connected with the grain size of nano-TiO2 powders
基金the Project for Science and Technology Plan of Wuhan City (No. 200910321092)the Youth Science Plan for Light of the Morning Sun of Wuhan City (No. 200750731270)the Fundamental Research Funds for the Central Universities (No. 2010-Ⅱ-020)
文摘The effects of microwave sintering on the properties, phases and microstructure of W-2OCu alloy, using composite powder fabricated by spray pyrolysis-continuous reduction technology, were investigated. Compared with the conventional hot-press sintering, microwave sintering to W-2OCu composites could be achieved with lower sintering temperature and shorter sintering time. Furthermore, microwave sintered W-Cu composites with high densification, homogenous microstructure and excellent properties were obtained. Microwave sintering could also result in finer microstructures. :~
文摘W-2 wt.%Y2O3 composite material with uniform distribution of yttrium element was fabricated through processes of mechanical alloying (MA) and spark plasma sintering (SPS). The relevant productions were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). The XRD showed that the W-2 wt.%Y2O3 composite powder, including tungsten matrix and Y2O3 particles, was refined to nanometer sizes during the MA process. The SEM and TEM micrographs showed that the MA produced composite powder presented a lamellar morphology and contained many dislocations and microcracks. The EDS showed that the Y and O elements were uniformly distributed in the W matrix after mechanically alloying for 15 h. The W-2 wt.%Y2O3 composite material with uniform distribution of yttrium was obtained by sintering of the MA produced composite powder.