A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. ...A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.展开更多
The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and D...The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dis- solved in kerosene as the membrane solution, was studied. The effects ofpH value, initial concentration of Eu(III) and different ionic strengths in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HNO3 solution, concentration of carrier, different stripping agents in the dispersion phase on the separation of Eu(III) were also investigated, respectively. As a result, the optimum separation conditions of Eu(III) were obtained as the concentration of HNO3 solution was 4.00 mol/L, concentration of D2EHPA was 0.160 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase, and pH value was 5.00 in the feed phase. Ionic strength had no obvious effect on the separation of Eu(III). Under the optimum conditions studied, when initial concentration of Eu(III) was 1.00× 10^-4 mol/L, the separation rate of Eu(III) was up to 94.2% during the separation period of 35 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.展开更多
The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(...The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.展开更多
ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologie...ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.展开更多
ZrO2/PMMA nanocomposite particles are synthesized through an in-situ free radical emulsion polymerization based on the silane coupling agent (Z-6030) modified ZrO2 nanoparticles, and the morphology, size and its dis...ZrO2/PMMA nanocomposite particles are synthesized through an in-situ free radical emulsion polymerization based on the silane coupling agent (Z-6030) modified ZrO2 nanoparticles, and the morphology, size and its distribution of nanocomposite particles are investigated. Scanning electron microscopy (SEM) images demonstrate that the methyl methacrylate (MMA) feeding rate has a significant effect on the particle size and morphology. When the MMA feeding rate decreases from 0.42 ml-min-1 to 0.08 ml. min-1, large particles (about 200-550.nm) will not form, and the size distribution become narrow (36-54 nm). The average nanocomposite particles size increases from 34 nm to 55 nm, as the MMA/ZrO2 nanoparticles mass ratio increased from 4 : 1 to 16 : 1. Regular spherical ZrO2/PMMA nanocomposite particles are synthesized when the emulsifier OP-10 concentration is 2 mg.m1-1. The nanocomposite particles could be mixed with VAc-VeoVa10 polymer matrix just by magnetic stirring to prepare the ZrOE/PMMA/VAc-VeoVal0 hybrid coatings. SEM and atomic force microscopy (AFM) photos reveal that the distribution of the ZrO2/PMMA nanocomposite particles in the VAc-VeoVal0 polymer matrix is homogenous and stable. Here, the grafted-PMMA polymer on ZrO2 nanoparticles plays as a bridge which effectively connects the ZrO2 nanoparticles and the VAc-VeoVal0 polymer matrix with improved comparability. In consequence, the hybrid coating with good dispersion stability is obtained.展开更多
The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 p...The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 particles, existing as a stable hexagonal phase(α-Al2O3), are uniformly dispersed in Mo matrix. The ultrafine α-Al2O3 particles remarkably refine grain size and increase dislocation density of Mo alloys. Moreover, a good interfacial bonding zone between α-Al2O3 and Mo grain is obtained. The crystallographic orientations of the interface of the Al2O3 particles and Mo matrix are [111]a-Al2O3//[111]Mo and(112)a-Al2O3//(0 11)Mo. Due to the effect of secondary phase and dislocation strengthening, the yield strength of Mo-2.0 vol.%Al2O3 alloy annealed at 1200 ℃ is approximately 56.0% higher than that of pure Mo. The results confirm that the addition of Al2O3 particles is a promising method to improve the mechanical properties of Mo alloys.展开更多
In the present work,the dispersion casting of Y-2O-3 particles in aluminum-copper alloy was investigated in terms of microstructural changes with respect to Cu contents of 20 (hypo),33 (eutectic) and 40 (hyper) ...In the present work,the dispersion casting of Y-2O-3 particles in aluminum-copper alloy was investigated in terms of microstructural changes with respect to Cu contents of 20 (hypo),33 (eutectic) and 40 (hyper) wt pct by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).For the fabrication of Al-Cu alloy dispersed Y-2O-3 ceramic particles,stir casting method was employed.In case of Al-20 wt pct Cu alloy (hypoeutectic),SEM images revealed that primary Al was grown up in the beginning.After that,eutectic phase with well dispersed ceramic particles was formed.In case of eutectic composition,Y-2O-3 particles were uniformly dispersed in the matrix.When the Cu is added into Al up to 40 wt pct (hypereutectic),primary phase was grown up without any Y-2O-3 ceramic particles in the early stage of solidification.Thereafter, eutectic phase was formed with well dispersed ceramic particles.It can be concluded that Y-2O-3 ceramic particles is mostly dispersed in case of eutectic composition in Al-Cu alloy.展开更多
The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying catio...The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying cations(Na^+, K^+, Ca^2+, Mg^2+, and Al^3+).The photocatalysis reactions of nano TiO2 with different dosages of electrolytes were measured by monitoring the degradation of Rhodamine B(Rh B) under ultraviolet A(UV-A) irradiation over time.The results showed that the photocatalytic performance of TiO2 was improved by the presence of Al^3+, while the performance was impaired by the other tested cations.The negative influences of divalent ions on the photocatalytic performance of TiO2 were more significant than monovalent ions.The TiO2 sol dispersed stable at nano scale at low concentration of electrolyte(< 0.01 mol/L) with slight change of pH, and coagulated into micro sizes at high concentration of electrolytes(> 0.1 mol/L) with larger increase or decrease of pH.The positive effects of Al^3+on the photodegradation rate of Rh B might relate to the strong hydrolytic action of Al^3+in aquatic solutions.The photocatalytic processes of TiO2 in the presence of all ions followed the Langmuir-Hinshelwood model, and the reaction kinetic constant was increased with the decrease of pH caused by different cations.These work suggested a new perspective about the relationship between coagulation and photocatalytic performance of TiO2 hydrosols in electrolyte with hydrolysable cations, which demonstrated that TiO2 hydrosols may be suitable as photocatalysts in aquatic environments.展开更多
To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO lo...To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO loadings were fabricated and characterized by different techniques and density functional theory calculations.In these catalysts,a spontaneous dispersion of CuO on the La_(2)Sn_(2)O_(7)pyrochlore support formed,having a monolayer dispersion capacity of 1.90 mmol CuO/100 m^(2) La_(2)Sn_(2)O_(7)surface.When loaded below this capacity,CuO exists in a sub-monolayer or monolayer state.X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and Bader charge and density of states analyses indicate that there are strong interactions between the sub-monolayer/monolayer CuO and the La_(2)Sn_(2)O_(7)support,mainly through the donation of electrons from Cu to Sn at the B-sites of the structure.In contrast,Cu has negligible interactions with La at the A-sites.This suggests that,in composite oxide supports containing multiple metals,the supported metal oxide interacts preferentially with one kind of metal cation in the support.The Raman,in situ diffuse reflectance infrared Fourier transform spectroscopy,and XPS results confirmed the formation of both O2^(-)and O2^(2-)as the active sites on the surfaces of the CuO/La_(2)Sn_(2)O_(7)catalysts,and the concentration of these active species determines the soot combustion activity.The number of active oxygen anions increased with increase in CuO loading until the monolayer dispersion capacity was reached.Above the monolayer dispersion capacity,microsized CuO crystallites formed,and these had a negative effect on the generation of active surface oxygen sites.In summary,a highly active catalyst can be prepared by covering the surface of the La_(2)Sn_(2)O_(7)support with a CuO monolayer.展开更多
A model adequacy test should be carried out on the basis of accurate aprioristic ideas about a class of adequate models, as in solving of practical problems this class is final. In article, the quadratic sums entering...A model adequacy test should be carried out on the basis of accurate aprioristic ideas about a class of adequate models, as in solving of practical problems this class is final. In article, the quadratic sums entering into the equation of the dispersive analysis are considered and their independence is proved. Necessary and sufficient conditions of existence of adequate models are resulted. It is shown that the class of adequate models is infinite.展开更多
The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, whi...The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, which is well-known as the phonon confinement effect in NCs. This usually gives a downshift and asymmetric broadening of the Raman peak in various NCs. Recently, the A1 mode of 1L MoS2 NCs is found to exhibit a blue shift and asymmetric broadening toward the high-frequency side [Chem. Soc. Rev. 44 (2015) 2757 and Phys. Rev. B 91 (2015) 195411]. In this work, we carefully check this issue by studying Raman spectra of lL MoS2 NCs prepared by the ion implantation technique in a wide range of ion-implanted dosage. The same confinement coefficient is used for both E' and A'1 modes in 1L MoS2 NCs since the phonon uncertainty in an NC is mainly determined by its domain size. The asymmetrical broadening near the A'1 and E' modes is attributed to the appearance of defect-activated phonons at the zone edge and the intrinsic asymmetrical broadening of the two modes, where the anisotropy of phonon dispersion curves along Г-K and Г- M is also considered. The photoluminescence spectra confirm the formation of small domain size of 1L MoS2 nanocrystallites in the ion-implanted 1L MoS2. This study provides not only an approach to quickly probe phonon dispersion trends of 2D materials away from Г by the Raman scattering of the corresponding NCs, but also a reference to completely understand the confinement effect of different modes in various nanomaterials.展开更多
Metal-based catalysts are prevalent in the CO_(2) hydrogenation to methanol owing to their remarkable catalytic activity.Herein,Ru/In_(2)O_(3) catalysts with different morphologies obtained by doping Ru into In_(2)O_(...Metal-based catalysts are prevalent in the CO_(2) hydrogenation to methanol owing to their remarkable catalytic activity.Herein,Ru/In_(2)O_(3) catalysts with different morphologies obtained by doping Ru into In_(2)O_(3) with irregular,rod-like,and flower-like morphologies are used for catalytic CO_(2) hydrogenation to methanol.Results indicate that the flower-like Ru/In_(2)O_(3)(Ru/In_(2)O_(3)-F)exhibits higher catalytic performance than Ru/In_(2)O_(3) with other morphologies,achieving a 12.9%CO_(2) conversion,74.02%methanol selectivity,and 671.36 mg_(MeOH) h^(−1) g_(cat)^(−1) methanol spatiotemporal yield.Furthermore,Ru/In_(2)O_(3)-F maintains its catalytic stability over 200 h at 5 MPa and 290℃.The promotional effect mainly stems from the fact that electronic structure of Ru can be effectively adjusted by modulating the morphology of In_(2)O_(3).The strong interaction between atomically dispersed Ru and In_(2)O_(3)-F enhances the structural stability of Ru,inhibiting the agglomeration of the catalyst during the reaction process.Furthermore,density-functional theory calculations reveal that highly dispersed Ru atoms not only perform efficient and rapid electronic gain and loss processes,facilitating the catalytic activation of H_(2) into H intermediates.It also enables the generated reactive H to rapidly overflow to the surrounding In sites to participate in CO_(2) reduction.These findings provide a theoretical basis for the development of high-performance catalysts for CO_(2) hydrogenation.展开更多
In order to get a homogenous mixture and compact of TiB2-Al2O3, hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles. PE-wax particles were first coated onto TiB2 p...In order to get a homogenous mixture and compact of TiB2-Al2O3, hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles. PE-wax particles were first coated onto TiB2 particles by hybridization, and then the nano-scale Al2O3 particles were coated onto the surface of TiB2 coated by PE-wax particles again. SEM, TEM and EDS were used to characterize the microstructure of as-received core/shell particles and its compacts. The experimental results show that a particle-scale homogenous dispersion of TiB2 and Al2O3 can be formed not only in mixed powder but also in dewaxed compacts. The compacts then were sintered by gas-pressing sintering (GPS). Finial products show improved mechanic properties comparing with reference samples fabricated by normal ways.展开更多
The phonon and thermodynamics properties of face-centered cubic CaF2 at high pressure and high temperature are investigated by using the shell model interatomic pair potential within General Utility Lattice Program (...The phonon and thermodynamics properties of face-centered cubic CaF2 at high pressure and high temperature are investigated by using the shell model interatomic pair potential within General Utility Lattice Program (GULP). The phonon dispersion curves and the corresponding density of state (PDOS) in this work are consistent with the experimental data and other theoretical results. The transverse optical (TO) and longitudinal optical (LO) mode splitting as well as heat capacity at constant volume Cv and entropy S versus pressure and temperature are also obtained.展开更多
Co^2+/γ-Al2O3 samples were prepared by incipient wetness impregnation of γ-Al2O3 with different concentration solution of COCl2 and dried at 40 ℃. We measured the positron lifetime spectra of the samples of differ...Co^2+/γ-Al2O3 samples were prepared by incipient wetness impregnation of γ-Al2O3 with different concentration solution of COCl2 and dried at 40 ℃. We measured the positron lifetime spectra of the samples of different Co2+ mass fractions (0%-8.24%) heated at different temperatures (100 -500 ℃). All lifetime spectra were resolved into four components, in which the third and the fourth components were related to the surface state of the micropores and the secondary pores of the γ-Al2O3. The experimental results showed that the Co^2+ was mainly located in the micropores and the secondary pores near to the exterior of the support. For low Co^2+ mass fraction samples, when the heating temperature was above 400℃, dispersal was almost finished. When the Co^2+ mass fraction was above 5.59%, Co^2+ and Cl were dispersed into the secondary pores in the form of multiple layers.展开更多
A new CO2 laser dispersion interferometer has been developed in the HL-2 M tokamak to measure the electron density.In order to meet the needs of high-precision measurement,a data acquisition system with real-time sign...A new CO2 laser dispersion interferometer has been developed in the HL-2 M tokamak to measure the electron density.In order to meet the needs of high-precision measurement,a data acquisition system with real-time signal conditioning(RSC)method is proposed.It can eliminate part of the impacts of environmental factors,such as mechanical vibration,light path changes,and plasma refraction effect during experiments.In harsh environments,the system can measure the line-integrated density with a high precision of 2×10^18 m^-2 with the RSC method.The system has been tested in a recent HL-2 A experimental campaign,and the results show that the RSC method plays an important role in the plasma electron density measurement.展开更多
A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radia...A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radiation shielding is designed for the combination of polarimeter/interferometer and CO_(2)dispersion interferometer.Furthermore,neutronics models of the two systems are developed based on the engineering-integrated design of CFETR polarimeter/interferometer and CO_(2)dispersion interferometer and the major material components of CFETR.The polarimeter/interferometer and CO_(2)dispersion interferometer's neutron and photon transport simulations were performed using the Monte Carlo neutral transport code to determine the energy deposition and neutron energy spectrum of the optical mirrors.The energy depositions of the first mirrors on the polarimeter/interferometer are reduced by three orders with the whole shielding.Since the mirrors of CO_(2)dispersion interferometer are very close to the diagnostic first wall,shielding space is limited and the CO_(2)dispersion interferometer energy deposition is higher than that of the polarimeter/interferometer.The dose rate after shutdown106s in the back-drawer structure has been estimated to be 83μSv h^(-1)when the radiation shield is filled in the diagnostic shielding modules,which is below the design threshold of 100μSv h^(-1).Radiation shielding design plays a key role in successfully applying polarimeter/interferometer and CO_(2)dispersive interferometer in CFETR.展开更多
Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly(...Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly( styrener-acrylonitrile)-b- poly ( 1, 1, 2, 2-tetrahydroperfluorooctyl methacrylate) (PSAN-b-PFOMA), as steric stabilizers. The structure and the particle morphology of the product were characterised by FT-IR and SEM. In addition, the effects of the stabilizer on the surface properties of the products were investigated in detail. Results indicate that the surface free energy of the poly (AN-r-VAc) (PAVAc) film decreases dramatically because of the existence of the stabilizer. And, when the initial concentration of the monomer was 10% (the mass (g) of monomer to the volume (mL) of ScCO2 ) the optimal concentration of the stabilizer is about 5% (w/w% to monomers).展开更多
The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecy...The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecylbenzene sulfonate(C_(18)H_(29)NaO_(3)S,SDBS)and were introduced to the cathode group on their surface.The Al_(2)O_(3) whiskers were modified by the cetyl trimethyl ammonium bromide(C_(19)H_(42)BrN,CTAB)and were featured in the anode group.The suitable contents of CTAB and SDBS,the application atmosphere,and the type of solvents were investigated.Dispersion results showed that adding 2wt%SDBS into Mg powders and adding 2wt%CTAB into Al_(2)O_(3) whiskers pro-moted the formation of more uniformly mixed composite powders,compared to those of conventional ball milling via scanning electron micro-scopy(SEM)analysis.Meanwhile,the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al_(2)O_(3) whisker reinforcements and Mg matrix than undecorated composite powders.After preparation by powder metallurgy,the mor-phology,grain size,hardness,and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency.The results indicated that the modification of homogenized dispersed Al_(2)O_(3) whiskers in composites contributed to the refinement of 26%in grain size and the improvement of 20%in hardness compared with pure Mg,and the reduction of 32.5%in the standard deviation coefficient of hardness compared with the ball-milling sample.展开更多
Over Rh_4(CO)_(?z)-derived Rh/SiO_2 catalyst,atmospheric hydroformylation and hydro- genation of ethylene are suggested to be structure sensitive and structure insensitive,res- pectively.
基金supported by the National Natural Science Foundation of China(21325731,21221004)the National High Technology Research and Development Program of China(863 Program)the State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex
文摘A titania support with a large surface area was developed, which has a BET surface area of 380.5 m^2/g, four times that of a traditional titania support. The support was ultrasonically impregnated with 5 wt% vanadia. A special heat treatment was used in the calcination to maintain the large surface area and high dispersion of vanadium species. This catalyst was compared to a common V2O5-TiO2 catalyst with the same vanadia loading prepared by a traditional method. The new catalyst has a surface area of 117.7 m^2/g, which was 38% higher than the traditional V2O5-TiO2 catalyst. The selective catalytic reduction(SCR) performance demonstrated that the new catalyst had a wider temperature window and better N2 selectivity compared to the traditional one. The NO conversion was 80% from 200 to 450 °C. The temperature window was 100 °C wider than the traditional catalyst. Raman spectra indicated that the vanadium species formed more V-O-V linkages on the catalyst prepared by the traditional method. The amount of V-O-Ti and V=O was larger for the new catalyst. Temperature programmed desorption of NH3, temperature programmed reduction by H2 and X-ray photoelectron spectroscopy results showed that its redox ability and total acidity were enhanced. The results are helpful for developing a more efficient SCR catalyst for the removal of NOx in flue gases.
基金Project supported by the National Natural Science Foundation of China (90401009)the Action Plan for the Development of Western China of the Chinese Academy of Sciences (KZCX2-XB2-13)Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology (602-210805)
文摘The Eu(III) separation in supported dispersion liquid membrane (SDLM), with polyvinylidene fluoride membrane (PVDF) as the support and dispersion solution containing HNO3 solution as the stripping solution and Di(2-ethylhexyl) phosphoric acid (D2EHPA) dis- solved in kerosene as the membrane solution, was studied. The effects ofpH value, initial concentration of Eu(III) and different ionic strengths in the feed phase, volume ratio of membrane solution and stripping solution, concentration of HNO3 solution, concentration of carrier, different stripping agents in the dispersion phase on the separation of Eu(III) were also investigated, respectively. As a result, the optimum separation conditions of Eu(III) were obtained as the concentration of HNO3 solution was 4.00 mol/L, concentration of D2EHPA was 0.160 mol/L, and volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase, and pH value was 5.00 in the feed phase. Ionic strength had no obvious effect on the separation of Eu(III). Under the optimum conditions studied, when initial concentration of Eu(III) was 1.00× 10^-4 mol/L, the separation rate of Eu(III) was up to 94.2% during the separation period of 35 min. The kinetic equation was developed in terms of the law of mass diffusion and the theory of interface chemistry. The results were in good agreement with the literature data.
基金Supported by the National Natural Science Foundation of China(No90401009)the Natural Science Foundation of Shaanxi Province, China(NoSJ08B16)+1 种基金the Science Research Program of Education Department of Shaanxi Province, China (No06JK215)the Research Fund for Excellent Doctoral Thesis of Xi'an University of Technology, China (No602-210805)
文摘The transport of Tb(III) in dispersion supported liquid membrane(DSLM) with polyvinylidene fluoride membrane(PVDF) as the support and dispersion solution including HCl solution as the stripping solution and di(2-ethylhexyl) phosphoric acid(D2EHPA) dissolved in kerosene as the membrane solution, has been studied. The effects of pH value, initial concentration of Tb(III) and different ionic strength in the feed phase, volume ratio of membrane solution to stripping solution, concentration of HCl solution, concentration of carrier, different stripping agents in the dispersion phase on the transport of Tb(III) have also been investigated, respectively. As a result, the optimum transport conditions of Tb(III) were obtained, i.e., the concentration of HCl solution was 4.0 mol/L, the concentration of D2EHPA was 0.16 mol/L, the volume ratio of membrane solution to stripping solution was 30:30 in the dispersion phase and pH value was 4.5 in the feed phase. Ionic strength had no obvious effect on the transport of Tb(III). Under the optimum conditions, the transport percentage of Tb(III) was up to 96.1% in a transport time of 35 min when the initial concentration of Tb(IIl) was 1.0× 10 -4 mol/L. The diffusion coefficient of Tb(III) in the membrane and the thickness of diffusion layer between feed phase and membrane phase were obtained and the values were 1.82×10 -8 m2/s and 5.61 um, respectively. The calculated results were in good agreement with the literature data.
基金Projects(51671166,51434008)supported by the National Natural Science Foundation of ChinaProject(2013CB733000)supported by the National Basic Research Program of China
文摘ZrO2 dispersion-strengthened Q345 steel with different ZrO2 contents(0%, 0.5% and 1.2%, mass fraction) was fabricated through combining middle frequency induction furnace melting and cored-wire injection technologies. The microstructure and fracture surface morphology of ZrO2 dispersion-strengthened Q345 steel in casting, normalizing and quenching states were observed using optical microscopy, scanning electron microscopy and transmission electron microscopy. Also, strengthening and fracture mechanisms of the alloys were analyzed. Results showed that the dispersed ZrO2 particles added into Q345 matrix significantly enhanced its strength, and the main strengthening mechanism was the formation of dislocation cells and pinning effect caused by the addition of ZrO2 particles. Apart from that, the hard martensite phase, grain refinement and high ZrO2 particles content also played important roles in strengthening effect. Furthermore, the nanoindentation was also performed to further reveal the strengthening effect and mechanism of dispersed ZrO2 particles in Q345 steel. Results showed that the hardness of ZrO2 dispersion-strengthened Q345 steel increased with the increase of ZrO2 content.
基金Supported by Production, Teaching & Research Combination Project for Universities in Guangdong Province(cgzhzd0904),Department of Education of Guangdong Province, China
文摘ZrO2/PMMA nanocomposite particles are synthesized through an in-situ free radical emulsion polymerization based on the silane coupling agent (Z-6030) modified ZrO2 nanoparticles, and the morphology, size and its distribution of nanocomposite particles are investigated. Scanning electron microscopy (SEM) images demonstrate that the methyl methacrylate (MMA) feeding rate has a significant effect on the particle size and morphology. When the MMA feeding rate decreases from 0.42 ml-min-1 to 0.08 ml. min-1, large particles (about 200-550.nm) will not form, and the size distribution become narrow (36-54 nm). The average nanocomposite particles size increases from 34 nm to 55 nm, as the MMA/ZrO2 nanoparticles mass ratio increased from 4 : 1 to 16 : 1. Regular spherical ZrO2/PMMA nanocomposite particles are synthesized when the emulsifier OP-10 concentration is 2 mg.m1-1. The nanocomposite particles could be mixed with VAc-VeoVa10 polymer matrix just by magnetic stirring to prepare the ZrOE/PMMA/VAc-VeoVal0 hybrid coatings. SEM and atomic force microscopy (AFM) photos reveal that the distribution of the ZrO2/PMMA nanocomposite particles in the VAc-VeoVal0 polymer matrix is homogenous and stable. Here, the grafted-PMMA polymer on ZrO2 nanoparticles plays as a bridge which effectively connects the ZrO2 nanoparticles and the VAc-VeoVal0 polymer matrix with improved comparability. In consequence, the hybrid coating with good dispersion stability is obtained.
基金Projects(U1704152,U1804124)supported by the National Natural Science Foundation of ChinaProject(174100510012)supported by Plan for Scientific Innovation Talent of Henan Province,China。
文摘The Mo alloys reinforced by Al2O3 particles were fabricated by hydrothermal synthesis and powder metallurgy. The microstructures of Mo-Al2O3 alloys were studied by using XRD, SEM and TEM. The results show that Al2O3 particles, existing as a stable hexagonal phase(α-Al2O3), are uniformly dispersed in Mo matrix. The ultrafine α-Al2O3 particles remarkably refine grain size and increase dislocation density of Mo alloys. Moreover, a good interfacial bonding zone between α-Al2O3 and Mo grain is obtained. The crystallographic orientations of the interface of the Al2O3 particles and Mo matrix are [111]a-Al2O3//[111]Mo and(112)a-Al2O3//(0 11)Mo. Due to the effect of secondary phase and dislocation strengthening, the yield strength of Mo-2.0 vol.%Al2O3 alloy annealed at 1200 ℃ is approximately 56.0% higher than that of pure Mo. The results confirm that the addition of Al2O3 particles is a promising method to improve the mechanical properties of Mo alloys.
基金Acknowledgement This work was supported financially by Ministry of Commerce, Industry &: Energy (MOCIE) through National Mid- and Long-term Atomic Energy R&D Program.
文摘In the present work,the dispersion casting of Y-2O-3 particles in aluminum-copper alloy was investigated in terms of microstructural changes with respect to Cu contents of 20 (hypo),33 (eutectic) and 40 (hyper) wt pct by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).For the fabrication of Al-Cu alloy dispersed Y-2O-3 ceramic particles,stir casting method was employed.In case of Al-20 wt pct Cu alloy (hypoeutectic),SEM images revealed that primary Al was grown up in the beginning.After that,eutectic phase with well dispersed ceramic particles was formed.In case of eutectic composition,Y-2O-3 particles were uniformly dispersed in the matrix.When the Cu is added into Al up to 40 wt pct (hypereutectic),primary phase was grown up without any Y-2O-3 ceramic particles in the early stage of solidification.Thereafter, eutectic phase was formed with well dispersed ceramic particles.It can be concluded that Y-2O-3 ceramic particles is mostly dispersed in case of eutectic composition in Al-Cu alloy.
基金supported by the National Natural Science Foundation of China (Nos.1706222, 51708108 and 51808188)the China Scholarship Council (No.201806090146)+1 种基金China Postdoctoral Science Foundation (No.2018M642151)State Key Laboratory of High Performance Civil Engineering Materials Open Fund (No.2018CEM001).
文摘The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying cations(Na^+, K^+, Ca^2+, Mg^2+, and Al^3+).The photocatalysis reactions of nano TiO2 with different dosages of electrolytes were measured by monitoring the degradation of Rhodamine B(Rh B) under ultraviolet A(UV-A) irradiation over time.The results showed that the photocatalytic performance of TiO2 was improved by the presence of Al^3+, while the performance was impaired by the other tested cations.The negative influences of divalent ions on the photocatalytic performance of TiO2 were more significant than monovalent ions.The TiO2 sol dispersed stable at nano scale at low concentration of electrolyte(< 0.01 mol/L) with slight change of pH, and coagulated into micro sizes at high concentration of electrolytes(> 0.1 mol/L) with larger increase or decrease of pH.The positive effects of Al^3+on the photodegradation rate of Rh B might relate to the strong hydrolytic action of Al^3+in aquatic solutions.The photocatalytic processes of TiO2 in the presence of all ions followed the Langmuir-Hinshelwood model, and the reaction kinetic constant was increased with the decrease of pH caused by different cations.These work suggested a new perspective about the relationship between coagulation and photocatalytic performance of TiO2 hydrosols in electrolyte with hydrolysable cations, which demonstrated that TiO2 hydrosols may be suitable as photocatalysts in aquatic environments.
文摘To understand the dispersion behavior of metal oxides on composite oxide supports and with the expectation of developing more feasible catalysts for soot oxidation,CuO/La_(2)Sn_(2)O_(7)samples containing varied CuO loadings were fabricated and characterized by different techniques and density functional theory calculations.In these catalysts,a spontaneous dispersion of CuO on the La_(2)Sn_(2)O_(7)pyrochlore support formed,having a monolayer dispersion capacity of 1.90 mmol CuO/100 m^(2) La_(2)Sn_(2)O_(7)surface.When loaded below this capacity,CuO exists in a sub-monolayer or monolayer state.X-ray photoelectron spectroscopy(XPS),Raman spectroscopy,and Bader charge and density of states analyses indicate that there are strong interactions between the sub-monolayer/monolayer CuO and the La_(2)Sn_(2)O_(7)support,mainly through the donation of electrons from Cu to Sn at the B-sites of the structure.In contrast,Cu has negligible interactions with La at the A-sites.This suggests that,in composite oxide supports containing multiple metals,the supported metal oxide interacts preferentially with one kind of metal cation in the support.The Raman,in situ diffuse reflectance infrared Fourier transform spectroscopy,and XPS results confirmed the formation of both O2^(-)and O2^(2-)as the active sites on the surfaces of the CuO/La_(2)Sn_(2)O_(7)catalysts,and the concentration of these active species determines the soot combustion activity.The number of active oxygen anions increased with increase in CuO loading until the monolayer dispersion capacity was reached.Above the monolayer dispersion capacity,microsized CuO crystallites formed,and these had a negative effect on the generation of active surface oxygen sites.In summary,a highly active catalyst can be prepared by covering the surface of the La_(2)Sn_(2)O_(7)support with a CuO monolayer.
文摘A model adequacy test should be carried out on the basis of accurate aprioristic ideas about a class of adequate models, as in solving of practical problems this class is final. In article, the quadratic sums entering into the equation of the dispersive analysis are considered and their independence is proved. Necessary and sufficient conditions of existence of adequate models are resulted. It is shown that the class of adequate models is infinite.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11225421,11474277,11434010 and 11574305the National Young 1000 Talent Plan
文摘The fundamental momentum conservation requirement q - 0 for the Raman process is relaxed in the nanocrystal- lites (NCs), and phonons away from the Brillouin-zone center will be involved in the Raman scattering, which is well-known as the phonon confinement effect in NCs. This usually gives a downshift and asymmetric broadening of the Raman peak in various NCs. Recently, the A1 mode of 1L MoS2 NCs is found to exhibit a blue shift and asymmetric broadening toward the high-frequency side [Chem. Soc. Rev. 44 (2015) 2757 and Phys. Rev. B 91 (2015) 195411]. In this work, we carefully check this issue by studying Raman spectra of lL MoS2 NCs prepared by the ion implantation technique in a wide range of ion-implanted dosage. The same confinement coefficient is used for both E' and A'1 modes in 1L MoS2 NCs since the phonon uncertainty in an NC is mainly determined by its domain size. The asymmetrical broadening near the A'1 and E' modes is attributed to the appearance of defect-activated phonons at the zone edge and the intrinsic asymmetrical broadening of the two modes, where the anisotropy of phonon dispersion curves along Г-K and Г- M is also considered. The photoluminescence spectra confirm the formation of small domain size of 1L MoS2 nanocrystallites in the ion-implanted 1L MoS2. This study provides not only an approach to quickly probe phonon dispersion trends of 2D materials away from Г by the Raman scattering of the corresponding NCs, but also a reference to completely understand the confinement effect of different modes in various nanomaterials.
基金financially supported by the Key Laboratory of Carbon-based Energy Molecular Chemical Utilization Technology in Guizhou Province(No.2023008)Guizhou Provincial Science and Technology Projects(No.ZKZD2023004)+1 种基金One Hundred Person Project of Guizhou Province(No.GCC 2023013)Scientific and Technological Innovation Talents Team Project of Guizhou Province(No.CXTD2023029).
文摘Metal-based catalysts are prevalent in the CO_(2) hydrogenation to methanol owing to their remarkable catalytic activity.Herein,Ru/In_(2)O_(3) catalysts with different morphologies obtained by doping Ru into In_(2)O_(3) with irregular,rod-like,and flower-like morphologies are used for catalytic CO_(2) hydrogenation to methanol.Results indicate that the flower-like Ru/In_(2)O_(3)(Ru/In_(2)O_(3)-F)exhibits higher catalytic performance than Ru/In_(2)O_(3) with other morphologies,achieving a 12.9%CO_(2) conversion,74.02%methanol selectivity,and 671.36 mg_(MeOH) h^(−1) g_(cat)^(−1) methanol spatiotemporal yield.Furthermore,Ru/In_(2)O_(3)-F maintains its catalytic stability over 200 h at 5 MPa and 290℃.The promotional effect mainly stems from the fact that electronic structure of Ru can be effectively adjusted by modulating the morphology of In_(2)O_(3).The strong interaction between atomically dispersed Ru and In_(2)O_(3)-F enhances the structural stability of Ru,inhibiting the agglomeration of the catalyst during the reaction process.Furthermore,density-functional theory calculations reveal that highly dispersed Ru atoms not only perform efficient and rapid electronic gain and loss processes,facilitating the catalytic activation of H_(2) into H intermediates.It also enables the generated reactive H to rapidly overflow to the surrounding In sites to participate in CO_(2) reduction.These findings provide a theoretical basis for the development of high-performance catalysts for CO_(2) hydrogenation.
基金Funded by the Foundation from the State Key Lab of Material and Processing of Wuhan University of Technology(2011-KF-7)the Foundation of Ministry of Education of China(PCSIR70644)
文摘In order to get a homogenous mixture and compact of TiB2-Al2O3, hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles. PE-wax particles were first coated onto TiB2 particles by hybridization, and then the nano-scale Al2O3 particles were coated onto the surface of TiB2 coated by PE-wax particles again. SEM, TEM and EDS were used to characterize the microstructure of as-received core/shell particles and its compacts. The experimental results show that a particle-scale homogenous dispersion of TiB2 and Al2O3 can be formed not only in mixed powder but also in dewaxed compacts. The compacts then were sintered by gas-pressing sintering (GPS). Finial products show improved mechanic properties comparing with reference samples fabricated by normal ways.
基金supported by the National Natural Science Foundation of China under Grant No.10576020
文摘The phonon and thermodynamics properties of face-centered cubic CaF2 at high pressure and high temperature are investigated by using the shell model interatomic pair potential within General Utility Lattice Program (GULP). The phonon dispersion curves and the corresponding density of state (PDOS) in this work are consistent with the experimental data and other theoretical results. The transverse optical (TO) and longitudinal optical (LO) mode splitting as well as heat capacity at constant volume Cv and entropy S versus pressure and temperature are also obtained.
基金Supported by the National Natural Science Foundation of China ( 10675093)
文摘Co^2+/γ-Al2O3 samples were prepared by incipient wetness impregnation of γ-Al2O3 with different concentration solution of COCl2 and dried at 40 ℃. We measured the positron lifetime spectra of the samples of different Co2+ mass fractions (0%-8.24%) heated at different temperatures (100 -500 ℃). All lifetime spectra were resolved into four components, in which the third and the fourth components were related to the surface state of the micropores and the secondary pores of the γ-Al2O3. The experimental results showed that the Co^2+ was mainly located in the micropores and the secondary pores near to the exterior of the support. For low Co^2+ mass fraction samples, when the heating temperature was above 400℃, dispersal was almost finished. When the Co^2+ mass fraction was above 5.59%, Co^2+ and Cl were dispersed into the secondary pores in the form of multiple layers.
文摘A new CO2 laser dispersion interferometer has been developed in the HL-2 M tokamak to measure the electron density.In order to meet the needs of high-precision measurement,a data acquisition system with real-time signal conditioning(RSC)method is proposed.It can eliminate part of the impacts of environmental factors,such as mechanical vibration,light path changes,and plasma refraction effect during experiments.In harsh environments,the system can measure the line-integrated density with a high precision of 2×10^18 m^-2 with the RSC method.The system has been tested in a recent HL-2 A experimental campaign,and the results show that the RSC method plays an important role in the plasma electron density measurement.
基金the National MCF Energy R&D Program of China(Nos.2019YFE03040003 and 2017YFE0301205)Key Program of Research and Development of Hefei Science Center,CAS(No.2019HSC-KPRD001)supported in part by the Collaborative Research Program of the Research Institute for Applied Mechanics,Kyushu University。
文摘A three-wave based laser polarimeter/interferometer and a CO_(2)laser dispersion interferometer are used to determine the electron and current density profiles on a Chinese fusion engineering test reactor(CFETR).Radiation shielding is designed for the combination of polarimeter/interferometer and CO_(2)dispersion interferometer.Furthermore,neutronics models of the two systems are developed based on the engineering-integrated design of CFETR polarimeter/interferometer and CO_(2)dispersion interferometer and the major material components of CFETR.The polarimeter/interferometer and CO_(2)dispersion interferometer's neutron and photon transport simulations were performed using the Monte Carlo neutral transport code to determine the energy deposition and neutron energy spectrum of the optical mirrors.The energy depositions of the first mirrors on the polarimeter/interferometer are reduced by three orders with the whole shielding.Since the mirrors of CO_(2)dispersion interferometer are very close to the diagnostic first wall,shielding space is limited and the CO_(2)dispersion interferometer energy deposition is higher than that of the polarimeter/interferometer.The dose rate after shutdown106s in the back-drawer structure has been estimated to be 83μSv h^(-1)when the radiation shield is filled in the diagnostic shielding modules,which is below the design threshold of 100μSv h^(-1).Radiation shielding design plays a key role in successfully applying polarimeter/interferometer and CO_(2)dispersive interferometer in CFETR.
基金National Natural Science Foundation of China (No20674017)
文摘Dispersion copolymerization of acryionitrile-vinyi acetate (AN-VAc) has been successfully performed in supercriticai carbon dioxide (ScCO2) with a series of iipophilic/CO2-philic diblock copolymers, such as poly( styrener-acrylonitrile)-b- poly ( 1, 1, 2, 2-tetrahydroperfluorooctyl methacrylate) (PSAN-b-PFOMA), as steric stabilizers. The structure and the particle morphology of the product were characterised by FT-IR and SEM. In addition, the effects of the stabilizer on the surface properties of the products were investigated in detail. Results indicate that the surface free energy of the poly (AN-r-VAc) (PAVAc) film decreases dramatically because of the existence of the stabilizer. And, when the initial concentration of the monomer was 10% (the mass (g) of monomer to the volume (mL) of ScCO2 ) the optimal concentration of the stabilizer is about 5% (w/w% to monomers).
基金the Fundamental Research Funds for the National Natural Science Foundation of China (Nos. 52101123 and 52004227)the Fundamental Research Funds for the Central Universities-Interdisciplinary Research (No. 2682021ZTPY001)the Dongguan Scitech Commissioner (No. 20211800500102)
文摘The potential difference between positive and negative ions was utilized to improve the homogenized dispersion of nanoscale Al_(2)O_(3) whiskers in Mg matrix composites.The Mg powders were decorated with sodium dodecylbenzene sulfonate(C_(18)H_(29)NaO_(3)S,SDBS)and were introduced to the cathode group on their surface.The Al_(2)O_(3) whiskers were modified by the cetyl trimethyl ammonium bromide(C_(19)H_(42)BrN,CTAB)and were featured in the anode group.The suitable contents of CTAB and SDBS,the application atmosphere,and the type of solvents were investigated.Dispersion results showed that adding 2wt%SDBS into Mg powders and adding 2wt%CTAB into Al_(2)O_(3) whiskers pro-moted the formation of more uniformly mixed composite powders,compared to those of conventional ball milling via scanning electron micro-scopy(SEM)analysis.Meanwhile,the calculated results derived from first-principle calculations also demonstrated the stronger cohesion between Al_(2)O_(3) whisker reinforcements and Mg matrix than undecorated composite powders.After preparation by powder metallurgy,the mor-phology,grain size,hardness,and standard deviation coefficient of composites were analyzed to evaluate the dispersed efficiency.The results indicated that the modification of homogenized dispersed Al_(2)O_(3) whiskers in composites contributed to the refinement of 26%in grain size and the improvement of 20%in hardness compared with pure Mg,and the reduction of 32.5%in the standard deviation coefficient of hardness compared with the ball-milling sample.
文摘Over Rh_4(CO)_(?z)-derived Rh/SiO_2 catalyst,atmospheric hydroformylation and hydro- genation of ethylene are suggested to be structure sensitive and structure insensitive,res- pectively.