期刊文献+
共找到116,921篇文章
< 1 2 250 >
每页显示 20 50 100
Regulation of GNPs on YSZ composites:Phase transformation,microstructures and nanomechanical properties
1
作者 Chenkun SUN Xiaodong ZHANG +3 位作者 Hongzhi JI Yiyong WU Oleg V.TOLOCHKO You WANG 《Chinese Journal of Aeronautics》 2025年第6期605-620,共16页
It is one of the big bottleneck problems for graphene to be uniformly distributed in ceramic matrix composites. A two-step approach was applied to prepare Graphene Nanoplatelets/Yt tria-Stabilized Zirconia(GNPs/YSZ) c... It is one of the big bottleneck problems for graphene to be uniformly distributed in ceramic matrix composites. A two-step approach was applied to prepare Graphene Nanoplatelets/Yt tria-Stabilized Zirconia(GNPs/YSZ) composites. Initially, GNPs were combined with YSZ through nanoparticle regranulation technology to obtain uniformly dispersed powders. Subsequently, the prepared powders were sintered by Spark Plasma Sintering(SPS). Systematic investigation was carried out to examine how GNPs regulate the phase, microstructures, and nanomechanical properties of GNPs/YSZ composite ceramics with different sintering temperatures.Results show that the GNPs can inhibit the coalescence of adjacent grains in YSZ ceramics. Herein,we propose that the intensity ratio of 2D peak to G peak of GNPs in Raman spectrum serves as a key indicator to assess the nanomechanical properties of GNPs/YSZ composites. When the intensity ratio of 2D peak to G peak is 0.5–0.6, the GNPs/YSZ composites obtained in the sintering temperature range of 1 200–1 250.C exhibit excellent nanomechanical properties such as hardness,elastic modulus, wear and creep resistance. 展开更多
关键词 GNPs/YSZcomposites nanoparticle regranulation technology Phase transformation microstructures nanomechanical properties
原文传递
Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays
2
作者 Shuli Wang Xuemin Kong +7 位作者 Siting Cai Yunshu Luo Yuxuan Gu Xiaotong Fan Guolong Chen Xiao Yang Zhong Chen Yue Lin 《Chinese Chemical Letters》 2025年第8期554-559,共6页
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m... Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent. 展开更多
关键词 SOLVENT Perovskite nanocrystal Electrohydrodynamic inkjet printing Color conversion microstructures arrays Micro-LED display
原文传递
Macro-mechanics and Microstructure of Nanomaterial-modified Geopolymer Concrete: A Comprehensive Review 被引量:1
3
作者 WANG Tao FAN Xiangqian +1 位作者 GAO Changsheng QU Chiyu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期204-214,共11页
We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research resu... We have described in detail the effects of nano-SiO_(2),nano-CaCO_(3),carbon nanotubes,and nano-Al_(2)O_(3) on geopolymer concrete from the perspectives of macro mechanics and microstructure.The existing research results show that the mechanism of nano-materials on geopolymer concrete mainly includes the filling effect,nucleation effect,and bridging effect,the appropriate amount of nano-materials can be used as fillers to reduce the porosity of geopolymer concrete,and can also react with Ca(OH)2 to produce C-S-H gel,thereby improving the mechanical properties of geopolymer concrete.The optimum content of nano-SiO_(2) is between 1.0%and 2.0%.The optimum content of nano-CaCO_(3) is between 2.0%and 3.0%.The optimum content of carbon nanotubes is between 0.1%and 0.2%.The optimum content of nano-Al_(2)O_(3) is between 1.0%and 2.0%.The main problems existing in the research and application of nanomaterial-modified geopolymer concrete are summarized,which lays a foundation for the further application of nanomaterial in geopolymer concrete. 展开更多
关键词 nanoMATERIALS low carbon geopolymer concrete macro-mechanics microstructurE
原文传递
Microstructures,mechanical properties,and strengthening mechanisms of the(NbMoTa)_(100−x)C_(x) refractory medium-entropy alloys 被引量:1
4
作者 Xueqian Gou Ruqing Cao +2 位作者 Weihua Zhou Zheling Shen Yi Li 《Journal of Materials Science & Technology》 2025年第11期105-119,共15页
Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uni... Refractory high/medium-entropy alloys(RH/MEAs)are known for their outstanding performance at el-evated temperatures;however,they usually exhibit poor room-temperature plasticity,which can be at-tributed to the non-uniform deformation that occurs at room temperature.Once cracks nucleate,they will rapidly propagate into vertical splitting cracks.Here,we introduce multiple phases including FCC and HCP phases into the NbMoTa RMEA via appropriate addition of carbon.The results show that multiple-phase synergy effectively suppresses non-uniform deformation,thereby delaying the onset of vertical splitting cracks.An optimal combination of compressive strength-plasticity is achieved by the(NbMoTa)_(92.5)C_(7.5) alloy.The significant improvement in room-temperature mechanical properties can be attributed to its hierarchical microstructure:in the mesoscale,the BCC matrix is divided by eutectic structures;while at the microscale,the BCC matrix is further refined by abundant lath-like FCC precipitates.The FCC precip-itates contain high-density stacking faults,acting as a dislocation source under compressive loading.The HCP phase in the eutectic microstructures,in turn,acts as a strong barrier to dislocation movement and simultaneously increases the dislocation storage capacity.These findings open a new route to tailor the microstructure and mechanical properties of RH/MEAs. 展开更多
关键词 Refractory medium-entropy alloys Carbon microstructures Mechanical properties Strengthening mechanisms
原文传递
Regulation of crystal and microstructures of RETaO_(4)(RE=Nd,Sm,Gd.Ho,Er)powders synthesized via co-precipitation 被引量:1
5
作者 Jiang Tian Lin Chen +10 位作者 Xunlei Chen Keren Luo Baihui Li Di Zhang Meng Wang Bing Xu Zhiyi Ren Shixiao Yan Xiaoliang Sun Chi Liu Jing Feng 《Journal of Rare Earths》 2025年第6期1246-1255,I0006,共11页
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research... Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders. 展开更多
关键词 Rare earth tantalates Chemical co-precipitation method Rare earths Crystal structures microstructures Annealingtemperatures
原文传递
Influence of Microstructures on Hot Deformation Behavior and Microstructure Evolution of FGH4113A Superalloy
6
作者 Yang Jinlong Xiong Jiangying +3 位作者 Yin Chao Cheng Junyi Guo Jianzheng Feng Ganjiang 《稀有金属材料与工程》 北大核心 2025年第4期898-907,共10页
The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion a... The hot compression curves and deformed microstructures were investigated under various hot deformation conditions in three states:hot isostatic pressing(HIP,A1),HIP+hot extrusion at 1100℃(A2),and HIP+hot extrusion at 1150℃(A3).The results show that A2 sample,extruded at 1100℃ with uniform γ+γ′duplex microstructures,demonstrates excellent hot deformation behavior at both 1050 and 1100℃.The true stress-true strain curves of A2 sample maintain a hardening-softening equilibrium over a larger strain range,with post-deformation average grain size of 5μm.The as-HIPed A1 sample and 1150℃ extruded A3 sample exhibit a softening region in deformation curves at 1050℃,and the grain microstructures reflect an incomplete recrystallized state,i.e.combination of fine recrystallized grains and initial larger grains,characterized by a necklace-like microstructure.The predominant recrystallization mechanism for these samples is strain-induced boundary migration.At 1150℃ with a strain rate of 0.001 s^(-1),the influence of the initial microstructure on hot deformation behavior and resultant microstructure is relatively less pronounced,and postdeformation microstructures are fully recrystallized grains.Fine-grained microstructures are conducive to maximizing the hot deformation potential of alloy.By judiciously adjusting deformation regimes,a fine and uniform deformed microstructure can be obtained. 展开更多
关键词 FGH4113A superalloy initial microstructure hot deformation behavior microstructure evolution
原文传递
Self-adjusting voxelated electrochemical three-dimensional printing of metallic microstructures 被引量:1
7
作者 Xianghe Meng Xiaomo Wu +4 位作者 Xingjian Shen Yan Xu Hao Zhang Mingjun Chen Hui Xie 《International Journal of Extreme Manufacturing》 2025年第1期420-433,共14页
Microscale metallic structures enhanced by additive manufacturing technology have attracted extensive attention especially in microelectronics and electromechanical devices.Meniscus-confined electrodeposition(MCED)adv... Microscale metallic structures enhanced by additive manufacturing technology have attracted extensive attention especially in microelectronics and electromechanical devices.Meniscus-confined electrodeposition(MCED)advances microscale 3D metal printing,enabling simpler fabrication of superior metallic microstructures in air without complex equipment or post-processing.However,accurately predicting growth rates with current MCED techniques remain challenging,which is essential for precise structure fabrication and preventing nozzle clogging.In this work,we present a novel approach to electrochemical 3D printing that utilizes a self-adjusting,voxelated method for fabricating metallic microstructures.Diverging from conventional voxelated printing which focuses on monitoring voxel thickness for structure control,this technique adopts a holistic strategy.It ensures each voxel’s position is in alignment with the final structure by synchronizing the micropipette’s trajectory during deposition with the intended design,thus facilitating self-regulation of voxel position and reducing errors associated with environmental fluctuations in deposition parameters.The method’s ability to print micropillars with various tilt angles,high density,and helical arrays demonstrates its refined control over the deposition process.Transmission electron microscopy analysis reveals that the deposited structures,which are fabricated through layer-by-layer(voxel)printing,contain nanotwins that are widely known to enhance the material’s mechanical and electrical properties.Correspondingly,in situ scanning electron microscopy(SEM)microcompression tests confirm this enhancement,showing these structures exhibit a compressive yield strength exceeding 1 GPa.The indentation tests provided an average hardness of 3.71 GPa,which is the highest value reported in previous work using MCED.The resistivity measured by the four-point probe method was(1.95±0.01)×10^(−7)Ω·m,nearly 11 times that of bulk copper.These findings demonstrate the considerable advantage of this technique in fabricating complex metallic microstructures with enhanced mechanical properties,making it suitable for advanced applications in microsensors,microelectronics,and micro-electromechanical systems. 展开更多
关键词 additive manufacturing self-adjusting voxelated electrodeposition metallic microstructures 3D printing nanotwinned copper
在线阅读 下载PDF
Effect of Different Heat Treatments on Surface Microstructures and Anodic Oxide Film Structures of Al-5.6Mg Alloy Sheets
8
作者 Jiang Zhongyu Xu Guangming 《稀有金属材料与工程》 北大核心 2025年第9期2205-2210,共6页
The effect of different intermediate annealing heat treatments on the surface microstructures and anodic oxide film structures of rolled Al-5.6Mg sheets was studied.The results show that when the continuous annealing ... The effect of different intermediate annealing heat treatments on the surface microstructures and anodic oxide film structures of rolled Al-5.6Mg sheets was studied.The results show that when the continuous annealing is used to control microstructures of the sheets instead of the static state annealing in the intermediate annealing process,the surface grain size of the sheets can be reduced by about 65.7%,and the size of the Mg precipitation phase(Mg_(2)Al_(3))can be reduced by about 67%.Under the combined influence of grain size,precipitation phase,and texture,the highest glossiness can be obtained,which is attributed to continuous intermediate annealing and stabilization annealing at low temperature.The uniform grain and precipitation structures is beneficial to reducing the inhomogeneous dissolution of the oxide film and to obtain the anodic oxide film with uniform thickness and high glossiness. 展开更多
关键词 heat treatment ANODIZING Al-Mg alloy microstructures
原文传递
Microstructure and Properties of ZrC Nanoparticles-Strengthened WNiFe Alloys
9
作者 Yang Run Wang Hui +4 位作者 Liu Rui Wu Xuebang Wang Xianping Fang Qianfeng Liu Changsong 《稀有金属材料与工程》 北大核心 2025年第7期1661-1670,共10页
93W-4.9Ni-2.1Fe alloys strengthened by nanoscale ZrC particles were prepared by spark-plasma-sintering(SPS)and hot rotary swaging,separately.Results show that the addition of a small number of ZrC nanoparticles can re... 93W-4.9Ni-2.1Fe alloys strengthened by nanoscale ZrC particles were prepared by spark-plasma-sintering(SPS)and hot rotary swaging,separately.Results show that the addition of a small number of ZrC nanoparticles can refine grains and increase the hardness of the WNiFe alloys,but hinder the formation of theγ-(Ni,Fe)phase during SPS.SPSed WNiFe and WNiFe-ZrC alloys are brittle at room temperature,while the swaged WNiFe and WNiFe-0.5ZrC(wt%)alloys are ductile.At 400°C,the swaged WNiFe-0.5ZrC alloy exhibits both higher tensile strength and better ductility than the swaged WNiFe.The nanoscale particles distributed in the W grains andγ-(Ni,Fe)phase provide a good pinning effect,which enhances the strength.The thermal conductivity of swaged WNiFe-0.5ZrC is only 71 W·m^(-1)·K^(-1)at room temperature,but it increases to about 100 W·m^(-1)·K^(-1)at 800°C,which is close to that of pure W(121 W·m^(-1)·K^(-1)).These results show the potential of WNiFe alloys as plasma-facing materials in fusion reactor. 展开更多
关键词 tungsten alloy ZRC dispersion strengthening microstructurE thermal conductivity
原文传递
Effect of Hot Working on Microstructures and Mechanical Properties of Gravity-Cast Al-8.3Zn-3.3Cu-2.2Mg HighStrength Aluminum Alloy
10
作者 Qi Yushi Jin Yu +5 位作者 Wei Fangming Du Lanjun Ren Yan Liang Xueqian Chen Gang Du Zhiming 《稀有金属材料与工程》 北大核心 2025年第2期327-336,共10页
The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal ho... The microstructures and mechanical properties of Al-8.3Zn-3.3Cu-2.2Mg alloys prepared via hot extrusion and liquid forging methods were investigated.Results show that based on DEFORM simulation analysis,the optimal hot extrusion parameters are determined as ingot initial temperature of 380°C and extrusion speed of 3 mm/s.The hot-extruded aluminum alloy after T6 heat treatment presents superior mechanical properties with yield strength of 519.6 MPa,ultimate tensile strength of 582.1 MPa,and elongation of 11.0%.Compared with the properties of gravity-cast and liquid-forged alloys,the yield strength of hot-extruded alloy increases by 30.8%and 4.9%,and the ultimate tensile strength improves by 43.5%and 10.2%,respectively.The significant improvement in tensile strength of the hot-extruded alloys is attributed to the elimination of casting defects and the refinement of matrix grain and eutectic phases.In addition,the hot-extruded alloy demonstrates superior plasticity compared with the liquid-forged alloy.This is because severe plastic deformation occurs during hot extrusion,which effectively breaks and disperses the eutectic phases,facilitating the dissolution and precipitation of the second phases and inhibiting the microcrack initiation. 展开更多
关键词 Al-Zn-Cu-Mg alloy hot extrusion liquid forging mechanical properties microstructure
原文传递
Elevated temperature magnetic microstructures and demagnetization mechanism for grain boundary diffused dual-main-phase(Nd,Ce)-Fe-B magnets 被引量:1
11
作者 Yifei Xiao Lele Zhang +7 位作者 Wei Yang Tao Liu Qisong Sun Xiaolong Song Yikun Fang Anhua Li Minggang Zhu Wei Li 《Journal of Materials Science & Technology》 2025年第4期10-23,共14页
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T... The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials. 展开更多
关键词 Magnetic microstructures Dual-main-phase (Nd Ce)-Fe-B Diffused Dy Rare earth permanent magnet materials Grain boundary diffusion process(GBDP)
原文传递
Improving Comprehensive Properties of Aluminum Conductor via Hierarchical Compositions and Microstructures
12
作者 S.L.Cai S.Wu +4 位作者 G.Ding Y.Liu J.Gu L.H.Dai M.Q.Jiang 《Acta Mechanica Solida Sinica》 2025年第5期884-896,共13页
The development and deployment of aluminum conductor have been significantly hampered by the contradiction of yield strength,uniform elongation,and electrical conductivity.Herein,we successfully fabricated a pure alum... The development and deployment of aluminum conductor have been significantly hampered by the contradiction of yield strength,uniform elongation,and electrical conductivity.Herein,we successfully fabricated a pure aluminum(Al)clad aluminum alloy(AA)rod with hierarchical compositions and microstructures.The proposed pure Al clad AA rod showcases an optimized combination of yield strength,uniform elongation,and electrical conductivity,i.e.,easing the restriction on improving yield strength,uniform elongation,and electrical conductivity.Compared to existing experiments,uniform elongation improved fourfold,while yield strength increased by 13%and electrical conductivity improved by 2%in terms of the international annealed copper standard(IACS).Microstructural characterizations and theoretical analyses revealed that the optimal performance of the Al clad AA arose from low-density low-angle grain boundaries(LAGBs)in the outer Al and high-density LAGBs with nanoscale precipitations in the inner AA.Our findings offer a compelling strategy for fabricating high-performance aluminum conductors,thereby laying a solid technical foundation for their wide application in power delivery systems. 展开更多
关键词 ALUMINUM Strength DUCTILITY Electrical conductivity Hierarchical microstructure
原文传递
Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime
13
作者 Zirui Zhu Peng Liu +2 位作者 Jinhua Wang Hongbin Zhang Wei Luo 《Chinese Chemical Letters》 2025年第4期516-521,共6页
Natural hydraulic lime(NHL) has garnered increasing attention for its sustainable and suitable performance in the field of historical building restoration. However, the prolonged hardening time and sluggish hydration ... Natural hydraulic lime(NHL) has garnered increasing attention for its sustainable and suitable performance in the field of historical building restoration. However, the prolonged hardening time and sluggish hydration rate of NHL infiuence the workability, strength development, and durability of construction structures in which it is used. In this study, nano-metakaolin(NMK) was applied as a highly reactive supplementary cementitious material(SCM) for NHL-based mortars to enhance their properties with various ratios. Meanwhile, the effects of NMK and its related enhancement mechanism on the physical properties and chemical structures of NHL composites were systematically investigated, mainly involving the modifications in their microstructure, chemical composition, and C-S-H structure. Results demonstrated that NMK-modified samples showed distinct and superior properties to pure NHL sample, such as shorter initial/final setting times(15.1%–49.1%, 27.1%–50.0%), and higher compactness(67.8%–81.4%, 38.1%–44.8%),lower shrinkage(25.0%–56.3%, 12.5%–25.0%), enhanced compressive strength(404.5%–546.0%, 180.8%–354.1%) and fiexural strength(227.5%–351.1%, 59.9%–125.7%) for both early and late curing times(7 and28 days). The inclusion of NMK not only acts as a fine filler, but also promotes NHL's hydrate rate by its super high pozzolanic activity, thus optimizing the pore structures and increasing the content and the average silicate chain length of hydration gel in NHL. Overall, this study can contribute to a deeper understanding of the enhancement mechanism of NMK on the physical properties and chemical structures of NHL from a meso/microscopic perspective, with a view to broadening NHL's potential applications. 展开更多
关键词 Natural hydraulic lime nano-metakaolin Pozzolanic reaction PROPERTIES microstructures
原文传递
Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
14
作者 Wanqiu Yu Yanxiang Sun +1 位作者 Lihua Liu Pingli Zhang 《Chinese Physics B》 2025年第1期407-412,共6页
The microstructure and magnetic properties of Fe_(40)Co_(40)Zr_(9)B_(10)Ge_(1)(Mo-free)and Fe_(40)Co_(40)Zr_(5)Mo_(4)B_(10)Ge_(1)(Mocontaining)nanocrystalline alloys,prepared using an amorphous crystallization method,... The microstructure and magnetic properties of Fe_(40)Co_(40)Zr_(9)B_(10)Ge_(1)(Mo-free)and Fe_(40)Co_(40)Zr_(5)Mo_(4)B_(10)Ge_(1)(Mocontaining)nanocrystalline alloys,prepared using an amorphous crystallization method,were investigated.Mo addition affects the crystallization of the Fe_(40)Co_(40)Zr_(9)B_(10)Ge_(1) amorphous alloy and decreases the grain size of theα-Fe(Co)phase below 650℃.For the Mo-free alloy annealed at 600℃ and the Mo-containing alloy annealed at 575℃,with a singleα-Fe(Co)crystallization phase and approximately similar crystallization volume fractions,the Mo-containing alloy showed smaller,more regularly shaped grains and a significantly narrower grain-size distribution than the Mo-free alloy.The Fe and Co contents in the nanograins of the two alloys also differed.For the Mo-free alloy,a higher concentration of Co distributed in the residual amorphous matrix.For the Mo-containing alloy,a higher concentration Co dissolved in the nanograins.The specific saturation magnetization and coercivity of the Mo-free alloy were 1.05-and 1.59-times higher than those of the Mo-containing alloy,respectively. 展开更多
关键词 nanostructured materials Mo addition microstructurE grain size
原文传递
Effect of Carbon on the Microstructures and Stress Rupture Properties of a Polycrystalline Ni-Based Superalloy
15
作者 Han Wang Shijie Sun +4 位作者 Naicheng Sheng Guichen Hou Jinguo Li Yizhou Zhou Xiaofeng Sun 《Acta Metallurgica Sinica(English Letters)》 2025年第1期151-163,共13页
The effect of carbon content on the microstructures and stress rupture properties of a newly developed polycrystalline Ni-based superalloy with high Cr content has been studied.It was observed that both grain size and... The effect of carbon content on the microstructures and stress rupture properties of a newly developed polycrystalline Ni-based superalloy with high Cr content has been studied.It was observed that both grain size and the number of carbides increased with an increase in carbon content.After heat treatment,granular M_(23)C_(6)carbides were dispersed around MC carbides along grain boundaries and inside grains.The quantity of granular M_(23)C_(6)carbides increased while their sizes decreased.These findings can be verified with the results of thermodynamic calculation and differential scanning calorimetry analysis.The stress rupture times(975℃/225 MPa)increased from 13.3 to 25.5 h with the carbon content increased from 0.1 to 0.2 wt.%.The improvement can be attributed to two primary factors.Firstly,grain boundary is typically weak region during deformation process and the grain size increased as carbon content increased in the alloy.Secondly,carbides act as hindrances to impede dislocation movement,leading to dislocation entanglement.As carbon content rose,the quantity of carbides in interdendritic regions and grain boundaries increased,providing a certain degree of strengthening effect and resulting in a longer stress rupture time. 展开更多
关键词 Ni-based superalloy microstructurE Stress rupture property CARBON CARBIDE
原文传递
Impact of Surface Microstructures on Diffusion-Induced Stress in Lithium-Ion Battery Electrodes:A Mechanical-Chemical Coupling Study
16
作者 Shuo Zhao Jindong Hao +4 位作者 Liuli Zhang Hai Liu Liyang Lin Cuihua An Qibo Deng 《Acta Mechanica Solida Sinica》 2025年第3期500-507,共8页
The Lithium-ion deintercalation induces a significant volume change in battery electrodes during charging and discharging processes,which in turn generates a large diffusion-induced stress(DIS).This stress can cause m... The Lithium-ion deintercalation induces a significant volume change in battery electrodes during charging and discharging processes,which in turn generates a large diffusion-induced stress(DIS).This stress can cause microstructural damage,consequently degrading battery performance.This work simplifies the particles making up the electrode into spheres and studies the impact of the surface microstructure on the distribution of diffusion-induced stress.A mechanical-chemical coupling model was established to study the DIS in secondary particles,which were constructed by adding convex particles to the ball-shaped particle surfaces of the electrode material.It is observed that an increase in the number of convex particles results in a higher concentration of lithium ions within the electrode material,along with the first principal stresses within the material particles.In addition,the convex particles increase the local stresses around the ball-shaped particle surface.Therefore,a round surface on the electrode material particles is beneficial for preventing potential fractures. 展开更多
关键词 Mechanical-chemical coupling Lithium-ion battery Diffusion-induced stress Surface microstructure
原文传递
Nano-lamellar Ti_(3)Al/TiAl alloy prepared via dual-wire-fed electron beam-directed energy deposition:microstructure evolution and nanohardness enhancement
17
作者 Qi Lv Liang Wang +9 位作者 Chen Liu Ying-Mei Tan Bao-Xian Su Bin-Bin Wang Long-Hui Yao Hong-Ze Fang Liang-Shun Luo Rui-Run Chen Fei Yang Yan-Qing Su 《Rare Metals》 2025年第2期1312-1331,共20页
Nano-lamellar Ti_(3)Al/TiAl(α2/γ)alloy with significantly improved nanohardness was prepared using dual-wire-fed electron beam-directed energy deposition(EB-DED)in this study.This investigation focused on the evolut... Nano-lamellar Ti_(3)Al/TiAl(α2/γ)alloy with significantly improved nanohardness was prepared using dual-wire-fed electron beam-directed energy deposition(EB-DED)in this study.This investigation focused on the evolution of the colony shape and lamellar thickness of the Ti-43Al lamellar alloy at different heights.Nanoindentation tests were employed to evaluate deformation resistance,and numerical simulations provided deeper insights into the deposition process.The results indicate that the colonies are mostly columnar,except for a few equiaxed colonies at the top.Rapid cooling significantly refines theα2 lamellae,resulting in an average spacing of 218 nm and thickness of 41 nm.Additionally,substantial microstrain and a nonequilibrium Al distribution lead to a significant generation ofγvariants,refining theγlamellae to 57 nm.Abundantγ/γ’andα2/γinterfaces,along with fineα2 phases,contribute to improved deformation resistance.Consequently,the nano-lamellar TiAl alloy exhibited a notable 32%increase in nanohardness(8.3 GPa)while maintaining a similar modulus(197 GPa)to conventionally prepared alloys.This study holds significant promise for advancing high-performance TiAl alloys through the dual-wire-fed EB-DED process. 展开更多
关键词 TiAl alloy Electron beam-directed energy deposition microstructure nanohardness
原文传递
Effect of pre-rolling temperature on microstructures, tensile properties and fracture behaviors of Al-5.9Zn-1.9Mg alloy during thermomechanical treatment
18
作者 CHENG Jun-hua GUO Xiao-fang +3 位作者 LIU Chang SHAO Hong-bang LIU Yu HUANG Yuan-chun 《Journal of Central South University》 2025年第9期3237-3254,共18页
The microstructures,mechanical properties,and fracture behaviors of an Al-5.9Zn-1.9Mg alloy subjected to thermomechanical treatment across different pre-rolling temperatures have been exhaustively investigated in pres... The microstructures,mechanical properties,and fracture behaviors of an Al-5.9Zn-1.9Mg alloy subjected to thermomechanical treatment across different pre-rolling temperatures have been exhaustively investigated in present work.The pre-deformation temperature exerts a modest influence on grain morphology,while it profoundly impacts the dislocation configurations and precipitation behaviors.Elevating the rolling temperature from ambient to 170℃results in a reduction in dislocation density within grains accompanied by a notable enhancement in their distributional uniformity.While advancing the temperature to 320℃prompts the premature formation of precipitates during deformation,which diminishes the precipitation during the subsequent ageing.Tensile results reveal that the thermomechanical treatment incorporating pre-rolling at 170℃confers a substantial strengthening effect on the alloy on the basis of both grain boundary strengthening and dislocation strengthening stemmed from pre-deformation along with the precipitation strengthening generated by ageing.Furthermore,the microstructure exhibits a relatively scarce presence of inhomogeneous features such as dislocation pile-ups and micro shear bands,contributing favorably to enhance the ductility of the alloy that presents the mixture of cleavage fracture and dimple-induced failure. 展开更多
关键词 Al-Zn-Mg alloy thermomechanical treatment deformation temperature microstructures tensile properties
在线阅读 下载PDF
Effect of titanium addition on microstructures and magnetic properties of B-lean Nd-Fe-B sintered magnets
19
作者 Qingfang Huang Qingzheng Jiang +7 位作者 Kexiang Zhong Renhui Liu Dawei Shi Gang Fu Yongjian Zhang Deqin Xu Dakun Chen Zhenchen Zhong 《Journal of Rare Earths》 2025年第10期2204-2211,I0005,共9页
The effect of Ti addition on microstructures and magnetic properties of B-lean(Pr,Nd)_(31.1)Fe_(67.1-x)(CoCuGa)_(1.4)Ti_(x)B_(0.9)(wt%,x=0.0,0.1,0.2,0.3,0.4)sintered magnets were investigated.The remanence Bris slight... The effect of Ti addition on microstructures and magnetic properties of B-lean(Pr,Nd)_(31.1)Fe_(67.1-x)(CoCuGa)_(1.4)Ti_(x)B_(0.9)(wt%,x=0.0,0.1,0.2,0.3,0.4)sintered magnets were investigated.The remanence Bris slightly reduced due to the deteriorated orientation degree and the diminished volume fraction of main phase caused by the existence of rod-shaped Ti-B-rich phase.However,the HcJobviously increases from1145 kA/m for x=0.0 sample to 1515 kA/m for x=0.2 sample.The results demonstrate that the increments of coercivity for x=0.2 and x=0.0 samples after post-sinter annealing(PSA)are 62.9%and 20.6%,respectively.Rod-shaped Ti-B-rich phase forms after Ti doping,which leads to the existence of6:13:1 type RE-Fe-(Cu,Ga)phase with high Fe content at triple junctions.This is beneficial to the formation of continuous thin grain boundaries with low Fe content,which can weaken the exchange coupling interaction between adjacent grains,leading to the improved coercivity. 展开更多
关键词 Ti doping B-lean Rare earths Magnetic property Thermal stability microstructure
原文传递
Fracture mechanisms of CGHAZ for Mg and Ca–Mg deoxidized HSLA steels after HHIW based on microstructures, crack behaviors and mechanical properties
20
作者 Liang Wang Jian Yang +3 位作者 Yin-hui Zhang Yan-li Chen Yu-qi Zhang Long-yun Xu 《Journal of Iron and Steel Research International》 2025年第10期3587-3606,共20页
The fracture mechanisms of coarse-grained heat-affected zone(CGHAZ)for Mg and Mg–Ca deoxidized high-strength low-alloy(HSLA)steels after high heat input welding(HHIW)were investigated based on the microstructures,cra... The fracture mechanisms of coarse-grained heat-affected zone(CGHAZ)for Mg and Mg–Ca deoxidized high-strength low-alloy(HSLA)steels after high heat input welding(HHIW)were investigated based on the microstructures,crack behaviors and mechanical properties.Compared to Mg–Ca steel,the proportion of intergranular acicular ferrites(IAFs)and polygonal ferrites(PFs)in Mg steel increases from 59.97%to 90.16%.The high-angle grain boundaries(HAGBs)and geometrically necessary dislocations density increase from 55.5%and 4.30×10^(14) m^(-2)to 70.4%and 5.48×10^(14) m^(–2),respectively,while effective grain size decreases from 9.46 to 8.12μm.The area fraction of radial zone in Mg steel decreases from 80.8%to 37.7%and cleavage plane is smaller with more curved and finer tearing ridges.The inclusions distributed at the center of cleavage planes and along river lines can serve as crack initiation sites.The zigzag pattern of primary crack propagation path has width of 476μm and the length of secondary cracks remains below 10μm.These cracks are deflected or arrested by IAFs,PFs and HAGBs,and tend to propagate along{110}plane family.These factors contribute to superior overall mechanical properties of Mg steel,especially increasing low-temperature impact toughness from 23 to 175 J. 展开更多
关键词 microstructure Mechanical property Crack behavior Fracture mechanism Coarse-grained heat-affected zone
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部