In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and mat...In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.展开更多
A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We empl...A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We employ a diffuse interface model that incorporates the mechanism of surface diffusion. The mechanism of the fabrication is systematically integrated for high reliability of computational analysis. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. Moreover, the theoretical analysis provides the guidance that is ordered by the fundamental geometrical design parameters to guide different fabrications of SON structures. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of nano/micro-fabrications.展开更多
Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical...Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.展开更多
Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro...Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro-structure has been applied on the micro-grinding tool.A morphology modeling has been established in this study to characterize the surface of microstructured micro-grinding tool,and the grinding performance of micro-structured micro-grinding tool has been analyzed through undeformed chip thickness,abrasive edge width,and effective distance between abrasives.Then deviation analysis,path optimization and parameter optimization of microchannel array precision grinding have been finished to improve processing quality and efficiency,and the deflection angle has the most obvious effects on the rectangular slot depth,micro-structured micro-grinding tool could reduce 10%surface roughness and 20%grinding force compared to original micro-grinding tool.Finally,the microchannel array has been machined with a size deviation of 2μm and surface roughness of 0.2μm.展开更多
High-performance 24CrNiMo steel was fabricated using Laser Powder Bed Fusion (LPBF). Subsequent quenching treatment was applied and the influence of quenching temperatures on micro-structure evolution and properties w...High-performance 24CrNiMo steel was fabricated using Laser Powder Bed Fusion (LPBF). Subsequent quenching treatment was applied and the influence of quenching temperatures on micro-structure evolution and properties was systematically characterised and analysed. The micro-structure of the as-built steel consisted of two parts. The first part comprised martensite with twins combined with ω-Fe nano-particles, and the second part consisted of lower bainite in the molten pool, as well as upper bainite, granular bainite and tempered martensite in the heat-affected zone. With the quenching temperatures varying from 800℃ to 950℃, the micro-structure gradually transformed from acicular ferrite + martensite to tempered martensite +θ-Fe3C carbides, and the grain size exhibited noticeable growth. Moreover, quenching treatments could eliminate the anisotropy and inhomogeneity of the micro-structure. The rod-shaped nanosized η-Fe2C and θ-Fe3C precipitates were clearly observed, which were converted from ω-Fe and distributed at multiple angles in the lath. The size and number of nano-precipitates, triggered by the high self-tempering degree of martensite, gradually increased. The relationships among grain size, the twins, dislocation density and nano-precipitation and the dramatically improved performance of quenched samples were analysed using strengthening mechanisms. After quenching at 850℃, the as-built 24CrNiMo steel attained ultra-high mechanical properties including hardness, Ultimate Tensile Strength (UTS), Elongation (El) and impact energy with values of 480.9 HV_(1), 1611.4 MPa, 9.8% and 42.8 J, respectively. Meanwhile, both the wear and thermal fatigue resistance increased by approximately 40%. This study demonstrated that LPBF-fabricated 24CrNiMo steel, with matching good performances, can be achieved using a subsequent one-step quenching process.展开更多
Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2)...Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.展开更多
Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray dif...Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray diffraction(XRD),field-emission scanning electron microscope(FESEM),and UV-Vis spectra.The effects of pH value on its micro-structures and optical properties were investigated.The results show that,with the pH value increasing,the particle size of the nano-crystalline CuInS2 increases,and its band gap becomes narrower under alkaline condition.The band gaps of CuInS2 nano-particles are from 1.52 eV to 1.93 eV,which makes them promising candidates as absorber materials for photovoltaic applications.展开更多
针对香菇育种过程中表型性状考察困难、人工测量费时费力的问题,提出一种适用于Jetson Orin Nano平台部署的香菇菌棒表型测量方法。使用手机和工业相机对3种不同数据来源的香菇菌棒进行图像采集,标注香菇菌落数据集并进行增强;比较了Bis...针对香菇育种过程中表型性状考察困难、人工测量费时费力的问题,提出一种适用于Jetson Orin Nano平台部署的香菇菌棒表型测量方法。使用手机和工业相机对3种不同数据来源的香菇菌棒进行图像采集,标注香菇菌落数据集并进行增强;比较了Bisenet、Stdcseg、U-net、Deeplabv3p、PP-liteseg 5个分割模型在Test-A、Test-B和Test-C测试集上的分割效果,结果表明PP-liteseg的普适性优于其他网络,PP-liteseg分割模型在3个测试集上的平均交并比超过97.53%,平均像素准确率高于99.49%,推理单幅图像耗时660 ms;为进一步平衡模型准确性和实时性,采用量化蒸馏方式对PP-liteseg模型进行压缩,并部署到Jetson Orin Nano平台上,压缩后的模型在Test-B测试集上的平均交并比和平均像素准确率分别为97.50%和99.51%,推理单幅图像耗时43.63 ms,比压缩前缩短近64%;采用PP-liteseg分割香菇菌棒图像,提取菌落表型,再根据菌落径向长度和轴向宽度得到菌丝生长长度,与人工测量值相比,菌丝生长长度平均绝对百分比误差、均方根误差和决定系数分别为1.874%、0.148 cm、0.918;采用该方法测量了6个菌株在连续4 d内的菌丝生长长度,结果表明,6个菌株的菌丝生长速度无论在单日还是在整个培养期内均有差异,其中49号和168号菌株差异最大。研究表明,本文方法适用于香菇菌棒表型测量,并能够以良好的准确性和实时性在Jetson Orin Nano平台上运行。展开更多
Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different method...Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different methods such as the method of modulating the trench depth,the method of introducing dielectric layer and p-type inversion region to improve the width of depletion region(W).It is observed that the intensity of electric field can be modulated by scaling the trench depth.On the other hand,the electron blocking region is formed in the detector enveloped with a dielectric layer.Furthermore,the introducing of p-type inversion region produces new p/n junction,which not only promotes the further expansion of the depletion region but also reduces the intensity of electric field produced by main junction.It can be realized that all these methods can considerably enhance the working voltage as well as W.Of them,the improvement on W of GaN-MSND with the p-type inversion region is the most significant and the value of W could reach 12.8μm when the carrier concentration of p-type inversion region is 10^17 cm^-3.Consequently,the value of W is observed to improve 200%for the designed GaN-MSND as compared with that without additional design.This work ensures to the researchers and scientific community the fabrication of GaN-MSND having superior detection limit in the field of intense radiation.展开更多
In this paper,we report the study of the process of fabricating a multi-layermetal micro-structure using UV-LIGA overlay technology,includingmask fabrication,substrate treatment,and UV-LIGA overlay processes.To solve ...In this paper,we report the study of the process of fabricating a multi-layermetal micro-structure using UV-LIGA overlay technology,includingmask fabrication,substrate treatment,and UV-LIGA overlay processes.To solve the process problems in the masking procedure,the swelling problemof the first layer of SU-8 thick photoresist was studied experimentally.The 5μmline-width compensation and closed 20μmand 30μmisolation strips were designed and fabricated around the micro-structure pattern.The pore problemin the Ni micro-electroforming layer was analyzed and the electroforming parameters were improved.The pH value of the electroforming solution should be controlled between 3.8 and 4.4 and the current density should be below 3 A/dm^2.To solve the problems of high inner stress and incomplete development of the micro-cylinder hole array with a diameter of 30μm,the lithography process was optimized.The pre-baking temperature was increased via gradient heating and rose every 5℃ from 65℃ to 85℃ and then remained at 85℃ for 50 min–1 h.In addition,the full contact exposure was used.Finally,a multi-layer metal micro-structure with high precision and good quality of microelectroforming layer was fabricated using UV-LIGA overlay technology.展开更多
A low-power CO_2 laser is used to deposit Fe powder and mixture of Fe andcarbon powder on substrates respectively, and the macro and micro-structure of the formed samplesare investigated. It is demonstrated that most ...A low-power CO_2 laser is used to deposit Fe powder and mixture of Fe andcarbon powder on substrates respectively, and the macro and micro-structure of the formed samplesare investigated. It is demonstrated that most grains of these samples are equi-axed. This isderived from the high nucleation velocity in the shallow melt pool besides rapid solidification ofthe liquid-state alloy or metal. Bainitic structure, combination of pearlite and ferrite structureand ferrite structure are seen respectively in the samples involving various amounts of carbon owingto no martensitic transformation in these small samples.展开更多
To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squar...To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.展开更多
Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles.As for the typical LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) material,the particle formation is significant for electroche...Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles.As for the typical LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) material,the particle formation is significant for electrochemical properties of the cathode.In this work,the structure,morphology,and electrochemical performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) secondary particles and single crystals were systematically studied.A lower Ni^(2+)/Ni^(3+)molar ratio of 0.66 and a lower residual alkali content of 0.228wt%were achieved on the surface of the single crystals.In addition,the single crystals showed a discharge capacity of 191.6 mAh/g at 0.2 C(~12 mAh/g lower than that of the secondary particles)and enhanced the electrochemical stability,especially when cycled at 50℃ and in a wider electrochemical window(between 3.0 and 4.4 V vs.Li+/Li).The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) secondary particles were suitable for applications requiring high specific capacity,whereas single crystals exhibited better stability,indicating that they are more suitable for use in long life requested devices.展开更多
The sub-vertical meso-and micro-structures and fabrics developed in coesite-bearing foliated eclogites in the Taohang (桃行) area, southeastern Shandong (山东), China. The diagnostic structures and fabrics, includ...The sub-vertical meso-and micro-structures and fabrics developed in coesite-bearing foliated eclogites in the Taohang (桃行) area, southeastern Shandong (山东), China. The diagnostic structures and fabrics, including penetrative foliation or mylonitic foliation containing mineral and stretching lineations, as well as sheath-like folds, appear to be the development of anastomosing UHP eciogite-facies shear belt arrays hosting massive eelogites. Textural relationships and mineral assem-blages indicate that the deformation of foliated eclogites developed closely after the formation of the massive eclogite, prior to the development of the granulite/amphibolite-facies symplectites and coronas, occurring over a very wide pressure range of (31-8)×10^2 MPa. It presents the structural records of the tectonometamorphic processes as being responsible for the earliest stages of exhumation of the UHP metamorphic rocks. Extensive regional field observations show that the meso-and micro-structures and fabrics recognized in the foliated eclogites at Taohang are remarkably similar or consistent in the whole Dabie (大别)-Sulu (苏鲁) UHP metamorphic belt. This article, thus, supports the idea that the earliest stages of exhumation of the UHP metamorphic rocks, from mantle depths to the Moho or the mantle-crust boundary layering, may be attributed mainly to a sub-vertical extrusion and ductile flow along the subduction channel, belonging to a syn-collision exhumation at about 235 to 220 Ma.展开更多
A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use o...A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use of template or organic surfactant. Reaction time has an important effect on the final morphology of the product. The micro-structure and morphology of Mg5 (CO3)4 (OH)2·4H2O were characterized by means of X-ray diffractometry (XRD), fieldemission scanning electron microscopy(FE-SEM). Brunauer-Emmett-Teller(BET) surface areas of the samples were also measured. The probable formation mechanism of flower-like micro-structure was discussed. It was found that Mg5 (CO3)4( OH)2·4H2O with flower-like micro-structure was a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol.展开更多
In this article, the convection dominated convection-diffusion problems with the periodic micro-structure are discussed. A two-scale finite element scheme based on the homogenization technique for this kind of problem...In this article, the convection dominated convection-diffusion problems with the periodic micro-structure are discussed. A two-scale finite element scheme based on the homogenization technique for this kind of problems is provided. The error estimates between the exact solution and the approximation solution, of the homogenized equation or the two-scale finite element scheme are analyzed. It is shown that the scheme provided in this article is convergent for any fixed diffusion coefficient 5, and it may be convergent independent of δ under some conditions. The numerical results demonstrating the theoretical results are presented in this article.展开更多
A new standard parametric modeling method of the micro-structure of plain woven composite is proposed. It is based on good analysis of the mechanical property of the yarn, weaving law of plain woven, and other factors...A new standard parametric modeling method of the micro-structure of plain woven composite is proposed. It is based on good analysis of the mechanical property of the yarn, weaving law of plain woven, and other factors. The method implements a woven fabric composite visual engineering modeling process standardization, and it gives five steps to calculate the key micro-structural parameters of the yarn including the cross-section and the trajectory of the central Line. On the basis, the digital model of a plain woven composite has been constructed. The experimental result shows that the forecast for the mechanical property of the model using finite-element simulation analysis is consistent with the actual value. The shape and the structure of the model are also consistent with the solid.展开更多
基金Project(50975095)supported by the National Natural Science Foundation of ChinaProject(2012ZM0048)supported by the Fundamental Research Funds for the Central Universities,China
文摘In order to investigate a gradient nano/micro-structured surface layer on pure copper produced by severe plasticity roller burnishing (SPRB) and grain refinement mechanism, the microstructure characteristics and material properties of sample at various depths from the topmost surface were investigated by SEM, TEM, XRD, OM etc. The experimental results show that the gradient nano/micro-structure was introduced into the surface layer of over 100μm in thickness. The remarkable increase in hardness near the topmost surface was mainly attributed to the reduced grain size. The equiaxed nano-sized grains were in random orientation and the most of their boundaries were low-angle grain boundaries (LAGBs). The coarse grains are refined into the few micro-sized grains by dislocation activities;deformation twinning was found to be the primary form for the formation of submicron grains;the formation of nanostructure was dominated by dislocation activities accompanied with rotation of grains in local region.
基金the National Natural Science Foundation of China(No.51775154)the ZheJiang Provincial Natural Science Foundation of China(No.LZ15E050004)
文摘A three-dimensional dynamic model for nano/micro-fabrications of silicon was presented. With the developed model, the fabrication process of silicon on nothing(SON) structure was quantitatively investigated. We employ a diffuse interface model that incorporates the mechanism of surface diffusion. The mechanism of the fabrication is systematically integrated for high reliability of computational analysis. A semi-implicit Fourier spectral scheme is applied for high efficiency and numerical stability. Moreover, the theoretical analysis provides the guidance that is ordered by the fundamental geometrical design parameters to guide different fabrications of SON structures. The performed simulations suggest a substantial potential of the presented model for a reliable design technology of nano/micro-fabrications.
基金The authors acknowledge support from the German Research Foundation(DFG:LE 2249/5-1)the Sino-German Center for Research Promotion(GZ1579)+1 种基金Yunnan Fundamental Research Projects(202201AW070014)Jiajia Qiu and Yu Duan appreciate support from the China Scholarship Council(No.201908530218&202206990027).
文摘Adopting a nano-and micro-structuring approach to fully unleashing the genuine potential of electrode active material benefits in-depth understandings and research progress toward higher energy density electrochemical energy stor-age devices at all technology readiness levels.Due to various challenging issues,especially limited stability,nano-and micro-structured(NMS)electrodes undergo fast electrochemical performance degradation.The emerging NMS scaffold design is a pivotal aspect of many electrodes as it endows them with both robustness and electrochemical performance enhancement,even though it only occupies comple-mentary and facilitating components for the main mechanism.However,extensive efforts are urgently needed toward optimizing the stereoscopic geometrical design of NMS scaffolds to minimize the volume ratio and maximize their functionality to fulfill the ever-increasing dependency and desire for energy power source supplies.This review will aim at highlighting these NMS scaffold design strategies,summariz-ing their corresponding strengths and challenges,and thereby outlining the potential solutions to resolve these challenges,design principles,and key perspectives for future research in this field.Therefore,this review will be one of the earliest reviews from this viewpoint.
基金co-supported by the Enterprise Innovation and Development Joint Program of the National Natural Science Foundation of China(No.U20B2032)Open Project Funding of State Key Laboratory for High Performance Tools(GXNGJSKL-2024-08)+1 种基金Open Foundation of the State Key Laboratory of Intelligent Manufacturing Equipment and Technology(IMETKF2023005)Introduced Innovative Scientific Research Team Project of Zhongshan(the tenth batch)(CXTD2023008)。
文摘Micro-grinding has been widely used in aerospace and other industry.However,the small diameter of the micro-grinding tool has limited its machining performance and efficiency.In order to solve the above problems,micro-structure has been applied on the micro-grinding tool.A morphology modeling has been established in this study to characterize the surface of microstructured micro-grinding tool,and the grinding performance of micro-structured micro-grinding tool has been analyzed through undeformed chip thickness,abrasive edge width,and effective distance between abrasives.Then deviation analysis,path optimization and parameter optimization of microchannel array precision grinding have been finished to improve processing quality and efficiency,and the deflection angle has the most obvious effects on the rectangular slot depth,micro-structured micro-grinding tool could reduce 10%surface roughness and 20%grinding force compared to original micro-grinding tool.Finally,the microchannel array has been machined with a size deviation of 2μm and surface roughness of 0.2μm.
基金co-supported by the National Key Research and Development Program of China (No. 2022YFB4600500)the National Natural Science Foundation of China (No. 52235006)
文摘High-performance 24CrNiMo steel was fabricated using Laser Powder Bed Fusion (LPBF). Subsequent quenching treatment was applied and the influence of quenching temperatures on micro-structure evolution and properties was systematically characterised and analysed. The micro-structure of the as-built steel consisted of two parts. The first part comprised martensite with twins combined with ω-Fe nano-particles, and the second part consisted of lower bainite in the molten pool, as well as upper bainite, granular bainite and tempered martensite in the heat-affected zone. With the quenching temperatures varying from 800℃ to 950℃, the micro-structure gradually transformed from acicular ferrite + martensite to tempered martensite +θ-Fe3C carbides, and the grain size exhibited noticeable growth. Moreover, quenching treatments could eliminate the anisotropy and inhomogeneity of the micro-structure. The rod-shaped nanosized η-Fe2C and θ-Fe3C precipitates were clearly observed, which were converted from ω-Fe and distributed at multiple angles in the lath. The size and number of nano-precipitates, triggered by the high self-tempering degree of martensite, gradually increased. The relationships among grain size, the twins, dislocation density and nano-precipitation and the dramatically improved performance of quenched samples were analysed using strengthening mechanisms. After quenching at 850℃, the as-built 24CrNiMo steel attained ultra-high mechanical properties including hardness, Ultimate Tensile Strength (UTS), Elongation (El) and impact energy with values of 480.9 HV_(1), 1611.4 MPa, 9.8% and 42.8 J, respectively. Meanwhile, both the wear and thermal fatigue resistance increased by approximately 40%. This study demonstrated that LPBF-fabricated 24CrNiMo steel, with matching good performances, can be achieved using a subsequent one-step quenching process.
基金supported by the National Natural Science Foundation of China(22168008,22378085)the Guangxi Natural Science Foundation(2024GXNSFDA010053)+1 种基金the Technology Development Project of Guangxi Bossco Environmental Protection Technology Co.,Ltd(202100039)Innovation Project of Guangxi Graduate Education(YCBZ2024065).
文摘Strategically coupling nanoparticle hybrids and internal thermosensitive molecular switches establishes an innovative paradigm for constructing micro/nanoscale-reconfigurable robots,facilitating energyefficient CO_(2) management in life-support systems of confined space.Here,a micro/nano-reconfigurable robot is constructed from the CO_(2) molecular hunters,temperature-sensitive molecular switch,solar photothermal conversion,and magnetically-driven function engines.The molecular hunters within the molecular extension state can capture 6.19 mmol g^(−1) of CO_(2) to form carbamic acid and ammonium bicarbonate.Interestingly,the molecular switch of the robot activates a molecular curling state that facilitates CO_(2) release through nano-reconfiguration,which is mediated by the temperature-sensitive curling of Pluronic F127 molecular chains during the photothermal desorption.Nano-reconfiguration of robot alters the amino microenvironment,including increasing surface electrostatic potential of the amino group and decreasing overall lowest unoccupied molecular orbital energy level.This weakened the nucleophilic attack ability of the amino group toward the adsorption product derivatives,thereby inhibiting the side reactions that generate hard-to-decompose urea structures,achieving the lowest regeneration temperature of 55℃ reported to date.The engine of the robot possesses non-contact magnetically-driven micro-reconfiguration capability to achieve efficient photothermal regeneration while avoiding local overheating.Notably,the robot successfully prolonged the survival time of mice in the sealed container by up to 54.61%,effectively addressing the issue of carbon suffocation in confined spaces.This work significantly enhances life-support systems for deep-space exploration,while stimulating innovations in sustainable carbon management technologies for terrestrial extreme environments.
基金Funded by the 973 Project (No. 2009CB939704)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT0547)
文摘Copper indium disulfide(CuInS2) nano-particles were synthesized by solvothermal method at 150 ℃ using copper(?) chloride,indium(Ш) chloride,thiourea and ethanol as raw materials,and characterized by X-ray diffraction(XRD),field-emission scanning electron microscope(FESEM),and UV-Vis spectra.The effects of pH value on its micro-structures and optical properties were investigated.The results show that,with the pH value increasing,the particle size of the nano-crystalline CuInS2 increases,and its band gap becomes narrower under alkaline condition.The band gaps of CuInS2 nano-particles are from 1.52 eV to 1.93 eV,which makes them promising candidates as absorber materials for photovoltaic applications.
文摘针对香菇育种过程中表型性状考察困难、人工测量费时费力的问题,提出一种适用于Jetson Orin Nano平台部署的香菇菌棒表型测量方法。使用手机和工业相机对3种不同数据来源的香菇菌棒进行图像采集,标注香菇菌落数据集并进行增强;比较了Bisenet、Stdcseg、U-net、Deeplabv3p、PP-liteseg 5个分割模型在Test-A、Test-B和Test-C测试集上的分割效果,结果表明PP-liteseg的普适性优于其他网络,PP-liteseg分割模型在3个测试集上的平均交并比超过97.53%,平均像素准确率高于99.49%,推理单幅图像耗时660 ms;为进一步平衡模型准确性和实时性,采用量化蒸馏方式对PP-liteseg模型进行压缩,并部署到Jetson Orin Nano平台上,压缩后的模型在Test-B测试集上的平均交并比和平均像素准确率分别为97.50%和99.51%,推理单幅图像耗时43.63 ms,比压缩前缩短近64%;采用PP-liteseg分割香菇菌棒图像,提取菌落表型,再根据菌落径向长度和轴向宽度得到菌丝生长长度,与人工测量值相比,菌丝生长长度平均绝对百分比误差、均方根误差和决定系数分别为1.874%、0.148 cm、0.918;采用该方法测量了6个菌株在连续4 d内的菌丝生长长度,结果表明,6个菌株的菌丝生长速度无论在单日还是在整个培养期内均有差异,其中49号和168号菌株差异最大。研究表明,本文方法适用于香菇菌棒表型测量,并能够以良好的准确性和实时性在Jetson Orin Nano平台上运行。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11675198,11875097,11975257,61774072,61574026,and 61971090)the National Key Research and Development Program of China(Grant Nos.2016YFB0400600 and2016YFB0400601)+2 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.DUT19LK45)the China Postdoctoral Science Foundation(Grant No.2016M591434)the Science and Technology Plan of Dalian City,China(Grant No.2018J12GX060).
文摘Nowadays,the superior detection performance of semiconductor neutron detectors is a challenging task.In this paper,we deal with a novel GaN micro-structured neutron detector(GaN-MSND)and compare three different methods such as the method of modulating the trench depth,the method of introducing dielectric layer and p-type inversion region to improve the width of depletion region(W).It is observed that the intensity of electric field can be modulated by scaling the trench depth.On the other hand,the electron blocking region is formed in the detector enveloped with a dielectric layer.Furthermore,the introducing of p-type inversion region produces new p/n junction,which not only promotes the further expansion of the depletion region but also reduces the intensity of electric field produced by main junction.It can be realized that all these methods can considerably enhance the working voltage as well as W.Of them,the improvement on W of GaN-MSND with the p-type inversion region is the most significant and the value of W could reach 12.8μm when the carrier concentration of p-type inversion region is 10^17 cm^-3.Consequently,the value of W is observed to improve 200%for the designed GaN-MSND as compared with that without additional design.This work ensures to the researchers and scientific community the fabrication of GaN-MSND having superior detection limit in the field of intense radiation.
文摘In this paper,we report the study of the process of fabricating a multi-layermetal micro-structure using UV-LIGA overlay technology,includingmask fabrication,substrate treatment,and UV-LIGA overlay processes.To solve the process problems in the masking procedure,the swelling problemof the first layer of SU-8 thick photoresist was studied experimentally.The 5μmline-width compensation and closed 20μmand 30μmisolation strips were designed and fabricated around the micro-structure pattern.The pore problemin the Ni micro-electroforming layer was analyzed and the electroforming parameters were improved.The pH value of the electroforming solution should be controlled between 3.8 and 4.4 and the current density should be below 3 A/dm^2.To solve the problems of high inner stress and incomplete development of the micro-cylinder hole array with a diameter of 30μm,the lithography process was optimized.The pre-baking temperature was increased via gradient heating and rose every 5℃ from 65℃ to 85℃ and then remained at 85℃ for 50 min–1 h.In addition,the full contact exposure was used.Finally,a multi-layer metal micro-structure with high precision and good quality of microelectroforming layer was fabricated using UV-LIGA overlay technology.
文摘A low-power CO_2 laser is used to deposit Fe powder and mixture of Fe andcarbon powder on substrates respectively, and the macro and micro-structure of the formed samplesare investigated. It is demonstrated that most grains of these samples are equi-axed. This isderived from the high nucleation velocity in the shallow melt pool besides rapid solidification ofthe liquid-state alloy or metal. Bainitic structure, combination of pearlite and ferrite structureand ferrite structure are seen respectively in the samples involving various amounts of carbon owingto no martensitic transformation in these small samples.
基金Supported by the Programme of Introducing Talents of Discipline to Universities (B07018)
文摘To obtain the form error of micro-structured surfaces robustly and accurately, a form er- ror evaluation method was developed based on the real coded genetic algorithm (RCGA). The meth- od employed the average squared distance as the matching criterion. The point to surface distance was achieved by use of iterative method and the modeling of RCGA for the surface matching was also presented in detail. Parameter selection for RCGA including the crossover rate and population size was discussed. Evaluation results of series simulated surfaces without form error show that this method can achieve the accuracy of root mean square deviation ( Sq ) less than 1 nm and surface pro- file error ( St ) less than 4 nm. Evaluation of the surfaces with different simulated errors illustrates that the proposed method can also robustly obtain the form error with nano-meter precision. The e- valuation of actual measured surfaces further indicates that the proposed method is capable of pre- cisely evaluating micro-structured surfaces.
基金This work was financially supported by the National Natural Science Foundation of China(No.21706292)Hunan Provincial Science and Technology Plan Project,China(No.2016TP1007)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2020JJ4107)Kai Han acknowledges the support from Innovation-Driven Project of Central South University(No.2020CX037).
文摘Ni-rich layered material is a kind of high-capacity cathode to meet the requirement of electric vehicles.As for the typical LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) material,the particle formation is significant for electrochemical properties of the cathode.In this work,the structure,morphology,and electrochemical performance of LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) secondary particles and single crystals were systematically studied.A lower Ni^(2+)/Ni^(3+)molar ratio of 0.66 and a lower residual alkali content of 0.228wt%were achieved on the surface of the single crystals.In addition,the single crystals showed a discharge capacity of 191.6 mAh/g at 0.2 C(~12 mAh/g lower than that of the secondary particles)and enhanced the electrochemical stability,especially when cycled at 50℃ and in a wider electrochemical window(between 3.0 and 4.4 V vs.Li+/Li).The LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2) secondary particles were suitable for applications requiring high specific capacity,whereas single crystals exhibited better stability,indicating that they are more suitable for use in long life requested devices.
基金supported by the National Natural Science Foundation of China (Nos. 40372094 and 49972067)
文摘The sub-vertical meso-and micro-structures and fabrics developed in coesite-bearing foliated eclogites in the Taohang (桃行) area, southeastern Shandong (山东), China. The diagnostic structures and fabrics, including penetrative foliation or mylonitic foliation containing mineral and stretching lineations, as well as sheath-like folds, appear to be the development of anastomosing UHP eciogite-facies shear belt arrays hosting massive eelogites. Textural relationships and mineral assem-blages indicate that the deformation of foliated eclogites developed closely after the formation of the massive eclogite, prior to the development of the granulite/amphibolite-facies symplectites and coronas, occurring over a very wide pressure range of (31-8)×10^2 MPa. It presents the structural records of the tectonometamorphic processes as being responsible for the earliest stages of exhumation of the UHP metamorphic rocks. Extensive regional field observations show that the meso-and micro-structures and fabrics recognized in the foliated eclogites at Taohang are remarkably similar or consistent in the whole Dabie (大别)-Sulu (苏鲁) UHP metamorphic belt. This article, thus, supports the idea that the earliest stages of exhumation of the UHP metamorphic rocks, from mantle depths to the Moho or the mantle-crust boundary layering, may be attributed mainly to a sub-vertical extrusion and ductile flow along the subduction channel, belonging to a syn-collision exhumation at about 235 to 220 Ma.
基金Supported by the National Natural Science Foundation of China(Nos.20671011,20331010,90406002and90406024)the 111 Project(No.B07012)the Key Laboratory of Structural Chemistry Foundation(No.060017).
文摘A novel flower-like hydrated magnesium carbonate hydroxide, Mg5 (CO3 )4 (OH)2·4H2O, with micro-structure composed of individual thin nano-sheets was synthesized using a facile solution route without the use of template or organic surfactant. Reaction time has an important effect on the final morphology of the product. The micro-structure and morphology of Mg5 (CO3)4 (OH)2·4H2O were characterized by means of X-ray diffractometry (XRD), fieldemission scanning electron microscopy(FE-SEM). Brunauer-Emmett-Teller(BET) surface areas of the samples were also measured. The probable formation mechanism of flower-like micro-structure was discussed. It was found that Mg5 (CO3)4( OH)2·4H2O with flower-like micro-structure was a novel and efficient catalyst for the synthesis of diphenyl carbonate (DPC) by transesterification of dimethyl carbonate (DMC) with phenol.
基金the Special Funds for Major State Basic Research Projects (No.G2000067102) National Natural Science Foundation of China (No.60474027).
文摘In this article, the convection dominated convection-diffusion problems with the periodic micro-structure are discussed. A two-scale finite element scheme based on the homogenization technique for this kind of problems is provided. The error estimates between the exact solution and the approximation solution, of the homogenized equation or the two-scale finite element scheme are analyzed. It is shown that the scheme provided in this article is convergent for any fixed diffusion coefficient 5, and it may be convergent independent of δ under some conditions. The numerical results demonstrating the theoretical results are presented in this article.
文摘A new standard parametric modeling method of the micro-structure of plain woven composite is proposed. It is based on good analysis of the mechanical property of the yarn, weaving law of plain woven, and other factors. The method implements a woven fabric composite visual engineering modeling process standardization, and it gives five steps to calculate the key micro-structural parameters of the yarn including the cross-section and the trajectory of the central Line. On the basis, the digital model of a plain woven composite has been constructed. The experimental result shows that the forecast for the mechanical property of the model using finite-element simulation analysis is consistent with the actual value. The shape and the structure of the model are also consistent with the solid.