The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is t...The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.展开更多
TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO...TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn-TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.展开更多
Doped and undoped nanostructured titanium dioxides were prepared via Sol-Gel method under varying conditions to investigate the effects of neodymium ion doping on the titania optical properties in MID IR range. X-ray ...Doped and undoped nanostructured titanium dioxides were prepared via Sol-Gel method under varying conditions to investigate the effects of neodymium ion doping on the titania optical properties in MID IR range. X-ray diffraction analyses show that the amorphous structure of the prepared samples turns to anatas polycrystalline structure after annealing process at 500°C. FTIR spectrums for pure and doped samples after annealing show a single transmission peak at wave number around 1200 cm-1. The transmission rate of the peak depends on Nd3+ concentrations and its value rises from 1.82% (for pure TiO2) to 86.9% (for doped with 12%wt Nd3+). Shifting on the peak occurs with a maximal shift at 7%wt Nd3+ and then becomes stable at higher concentration. FTIR spectra give a good indication in the direction of preparation of optical band-pass filter at a wavelength around 8.34 μm (~1200 cm-1).展开更多
Ytterbium doped TiO2 nano-particles were prepared via Sol-Gel Technique under varying conditions to investigate the effects of Ytterbium ion doping on the Titania optical properties in MID IR range. X-ray diffraction ...Ytterbium doped TiO2 nano-particles were prepared via Sol-Gel Technique under varying conditions to investigate the effects of Ytterbium ion doping on the Titania optical properties in MID IR range. X-ray diffraction analyses show that prepared Yb3+ doped TiO2 samples have polycrystalline structure in Anatas phase. FTIR spectrums for pure and doped samples after annealing process show a single transmission peak at wave number around 1145 cm-1. Transmission rate of this peak depends on Yb3+ concentrations and its value rises from 1.82% (for pure TiO2) to 58.1% (for doped with 1.13 wt% Yb3+). Slightly peak shift occurs at a lower doping rate with no further response to higher concentration rate. FTIR spectra gives a good indication in direction of preparation of optical band-pass filter at a wavelength around 8.733 μm (~1145 cm-1).展开更多
In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were ...In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity.展开更多
文摘The nano-titanium dioxide (nano-TiO_2) sensing membrane,fabricated by sol-gel technology,was used as the pH-sensing layer of the extended gate field effect transistor (EGFET) device.The objective of this research is the preparation of titanium dioxide materials by sol-gel method using Ti(OBu)_4 as the precursor.In this study,we fabricated a nano-titanium dioxide sensing layer on the ITO glass by dip coating.In order to examine the sensitivity of the nano-TiO_2 films applied to the EGFET devices,we adopted the ITO glass as substrate,and measured theⅠ_(DS)-Ⅴ_G curves of the nano-titanium dioxide separative structure EGFET device in the pH buffer solutions that have different pH values by the Keithley 236 Instrument.By the experimental results,we can obtain the pH sensitivities of the EGFET with nano-TiO_2 sensing membrane prepared by sol-gel method,which is 59.86mV/pH from pH 1 to pH 9.
基金Project supported by the Innovation Foundation of BUAA for PhD Graduates (Grant No. 292122)Equipment Research Foundation of China
文摘TiO2 nano powders with Mn concentration of 0 at%-12 at% were synthesized by the sol-gel process, and were annealed at 500 ℃ and 800 ℃ in air for 2 hrs. X-ray diffraction (XRD) measurements indicate that the Mn-TiO2 nano powders with Mn concentration of 1 at% and 2 at% annealed at 500 and 800 ℃ are of pure anatase and rutile, respectively. The scanning electron microscope (SEM) observations reveal that the crystal grain size increases with the annealing temperature, and the high resolution transmission electron microscopy (HRTEM) investigations further indicate that the samples are well crystallized, confirming that Mn has doped into the TiO2 crystal lattice effectively. The room temperature ferromagnetism, which could be explained within the scope of the bound magnetic polaron (BMP) theory, is detected in the Mn-TiO2 samples with Mn concentration of 2 at%, and the magnetization of the powders annealed at 500 ℃ is stronger than that of the sample treated at 800 ℃. The UV-VIS diffuse reflectance spectra results demonstrate that the absorption of the TiO2 powders could be enlarged by the enhanced trapped electron absorption caused by Mn doping.
文摘Doped and undoped nanostructured titanium dioxides were prepared via Sol-Gel method under varying conditions to investigate the effects of neodymium ion doping on the titania optical properties in MID IR range. X-ray diffraction analyses show that the amorphous structure of the prepared samples turns to anatas polycrystalline structure after annealing process at 500°C. FTIR spectrums for pure and doped samples after annealing show a single transmission peak at wave number around 1200 cm-1. The transmission rate of the peak depends on Nd3+ concentrations and its value rises from 1.82% (for pure TiO2) to 86.9% (for doped with 12%wt Nd3+). Shifting on the peak occurs with a maximal shift at 7%wt Nd3+ and then becomes stable at higher concentration. FTIR spectra give a good indication in the direction of preparation of optical band-pass filter at a wavelength around 8.34 μm (~1200 cm-1).
文摘Ytterbium doped TiO2 nano-particles were prepared via Sol-Gel Technique under varying conditions to investigate the effects of Ytterbium ion doping on the Titania optical properties in MID IR range. X-ray diffraction analyses show that prepared Yb3+ doped TiO2 samples have polycrystalline structure in Anatas phase. FTIR spectrums for pure and doped samples after annealing process show a single transmission peak at wave number around 1145 cm-1. Transmission rate of this peak depends on Yb3+ concentrations and its value rises from 1.82% (for pure TiO2) to 58.1% (for doped with 1.13 wt% Yb3+). Slightly peak shift occurs at a lower doping rate with no further response to higher concentration rate. FTIR spectra gives a good indication in direction of preparation of optical band-pass filter at a wavelength around 8.733 μm (~1145 cm-1).
基金Supported by the National Basic Research Program of China (No. 2009CB320300)National Natural Science Foundation of China (No. 61072023)National High Technology Research and Development Programs (No.2012AA040506, No. 2012AA101608)
文摘In this work, electrospray technique combined sol-gel method was used to prepare porous TiO2 film. X-ray Photoelectron Spectroscopy (XPS), X-Ray Diffraction (XRD), and Scanning Electron Microscope (SEM) analyses were conducted to examine the chemical composition, phase structure, and surface morphology of the sprayed TiO2 film. After calcined at 450℃ in air atmosphere for 2 h, mesoporous TiO2 nano-spheres clusters were formed on the surface of silicon wafer and the average size of nano-spheres was 250 nm. Ti presented as Ti 4+ oxidation state in TiO2 film, and the TiO2 film exhibited the anatase phase. The sprayed porous TiO2 films were employed as photocatalyst to degrade organic phosphorus in water samples. Compared with the TiO2 film prepared by Sol-Gel spin-coating method, the porous TiO2 film deposited by electrospray combined sol-gel method showed higher photocatalytic activity.