The modification of the traditional interior wall paint was carried out by means of adding nano-TiO2 as a functional pigment. By regulating the dosage of dispersant, the nano-particles can be dispersed in paint homoge...The modification of the traditional interior wall paint was carried out by means of adding nano-TiO2 as a functional pigment. By regulating the dosage of dispersant, the nano-particles can be dispersed in paint homogeneously. With two aspects of experiments: dosage of nano-TiO2 and pigment volume concentration (PVC), the paint formulation can be optimized and its properties~ such as hardness, scrub resistance, storage stability, contrast ratio and gloss can be improved. Finally an interior wall paint with high performance and air purification was prepared. Its character of formaldehyde degradation would be discussed in the next article.展开更多
Powder quartz(PQ)/nano-TiO2composite was prepared by a mechanochemical method. Based on as-prepared PQ/nano-TiO2composite, we prepared interior paints and investigated the degradation efficiency of formaldehyde(DEF). ...Powder quartz(PQ)/nano-TiO2composite was prepared by a mechanochemical method. Based on as-prepared PQ/nano-TiO2composite, we prepared interior paints and investigated the degradation efficiency of formaldehyde(DEF). Scanning electron microscopy showed that nano-TiO2got well dispersed by the adding of PQ. Thermogravimetric analysis indicated that the mass ratio of 4:1 was a relatively good proportion for the most production of PQ/nano-TiO2composite. Fourier transform-infrared spectrometry showed that the peak position of Ti-O-Si bond varied with the milling time. At the early stage, no characteristic peak of Ti-O-Si bond was observed, while at the later stage, new peaks at 902 cm-1and 937 cm-1appeared. Meanwhile, PQ/nano-TiO2composite-based interior paint exhibited significant DEF of 96.3% compared to that consisting of sole nanoTiO2of 92.0% under visible light illumination. As an abundant mineral resource, PQ would make interior paints with HCHO purifying effect much more efficient and cheaper.展开更多
Cell surface of aquatic organisms constitutes a primary site for the interaction and a barrier for the nano-TiO2 biological effects.In the present study,the biological effects of nano-TiO2 on a unicellular green algae...Cell surface of aquatic organisms constitutes a primary site for the interaction and a barrier for the nano-TiO2 biological effects.In the present study,the biological effects of nano-TiO2 on a unicellular green algae Chlamydomonas reinhardtii were studied by observing the changes of the cell surface morphology and functional groups under UV or natural light.By SEM,the cell surface morphology of C.reinhardtii was changed under UV light,nano-TiO2 with UV light or natural light,which indicated that photocatalysis damaged cell surface.It was also observed that cell surface was surrounded by TiO2 nanoparticles.The ATR-FTIR spectra showed that the peaks of functional groups such as C-N,-C=O,-C-O-C and P=O,which were the important components of cell wall and membrane,were all depressed by the photocatalysis of nano-TiO2 under UV light or natural light.The photocatalysis of nano-TiO2 promoted peroxidation of functional groups on the surface of C.reinhardtii cells,which led to the damages of cell wall and membrane.展开更多
The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying catio...The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying cations(Na^+, K^+, Ca^2+, Mg^2+, and Al^3+).The photocatalysis reactions of nano TiO2 with different dosages of electrolytes were measured by monitoring the degradation of Rhodamine B(Rh B) under ultraviolet A(UV-A) irradiation over time.The results showed that the photocatalytic performance of TiO2 was improved by the presence of Al^3+, while the performance was impaired by the other tested cations.The negative influences of divalent ions on the photocatalytic performance of TiO2 were more significant than monovalent ions.The TiO2 sol dispersed stable at nano scale at low concentration of electrolyte(< 0.01 mol/L) with slight change of pH, and coagulated into micro sizes at high concentration of electrolytes(> 0.1 mol/L) with larger increase or decrease of pH.The positive effects of Al^3+on the photodegradation rate of Rh B might relate to the strong hydrolytic action of Al^3+in aquatic solutions.The photocatalytic processes of TiO2 in the presence of all ions followed the Langmuir-Hinshelwood model, and the reaction kinetic constant was increased with the decrease of pH caused by different cations.These work suggested a new perspective about the relationship between coagulation and photocatalytic performance of TiO2 hydrosols in electrolyte with hydrolysable cations, which demonstrated that TiO2 hydrosols may be suitable as photocatalysts in aquatic environments.展开更多
Nano-TiO2 photocatalytic oxidation was used to perform the advanced treatment of biologically treated chemical comprehensive wastewater. The effects of reaction time,nano-TiO2 dosage and initial p H of the wastewater ...Nano-TiO2 photocatalytic oxidation was used to perform the advanced treatment of biologically treated chemical comprehensive wastewater. The effects of reaction time,nano-TiO2 dosage and initial p H of the wastewater on the removal rate of COD were tested. The GC/MS and EEM techniques were used to qualitatively analyze organic compounds in the wastewater before and after treatment. The result showed that after the biologically treated chemical comprehensive wastewater was treated by nano-TiO2 photocatalytic oxidation under the conditions of reaction time 3 h,nano-TiO2 dosage 8 g/L,and pH 8. 0,the effluent COD was 61. 9 mg/L and its removal rate was 63. 8%. Additionally,the species of organic pollutants reduced from 12 to 6. Meanwhile,the content of humic-like and fulvic-like substances dropped dramatically.展开更多
TiO2 nanotubes on Ti metal surface were prepared by the electrochemical anodization method. Then, nanosilver was deposited onto the nanotubes by the electroless dip coating and the anodization. The obtained TiO2 nanot...TiO2 nanotubes on Ti metal surface were prepared by the electrochemical anodization method. Then, nanosilver was deposited onto the nanotubes by the electroless dip coating and the anodization. The obtained TiO2 nanotubes were examined by using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, cyclic voltammetry, and UV–Vis. The electrochemical band gap(Eg^CV) of the nanosilver-coated TiO2 nanotubes prepared by the anodization was found as 1.54 eV. Using the UV–Vis measurements, the optical band gap energy(Eg^op.) was calculated as 1.51 eV for the Ag/TiO2 nanotubes obtained by electroless dip coating. The electrical conductivity of the TiO2 nanotubes also increased from 3.0 × 10^-4 to 34.7 S/cm after nano Ag deposition by the anodization method.These Ag/TiO2 nanotubes with low band gap and high electrical conductivity are desirable for the applications in electronics, Li-ion batteries, and solar cells.展开更多
基金Project supported by the Foundation of National Key Technologies Research and Development Program-Shanghai World Expo Special Project (Grant No.04DZ05803)
文摘The modification of the traditional interior wall paint was carried out by means of adding nano-TiO2 as a functional pigment. By regulating the dosage of dispersant, the nano-particles can be dispersed in paint homogeneously. With two aspects of experiments: dosage of nano-TiO2 and pigment volume concentration (PVC), the paint formulation can be optimized and its properties~ such as hardness, scrub resistance, storage stability, contrast ratio and gloss can be improved. Finally an interior wall paint with high performance and air purification was prepared. Its character of formaldehyde degradation would be discussed in the next article.
基金Funded by the National Natural Science Foundation of China(No.41130746)
文摘Powder quartz(PQ)/nano-TiO2composite was prepared by a mechanochemical method. Based on as-prepared PQ/nano-TiO2composite, we prepared interior paints and investigated the degradation efficiency of formaldehyde(DEF). Scanning electron microscopy showed that nano-TiO2got well dispersed by the adding of PQ. Thermogravimetric analysis indicated that the mass ratio of 4:1 was a relatively good proportion for the most production of PQ/nano-TiO2composite. Fourier transform-infrared spectrometry showed that the peak position of Ti-O-Si bond varied with the milling time. At the early stage, no characteristic peak of Ti-O-Si bond was observed, while at the later stage, new peaks at 902 cm-1and 937 cm-1appeared. Meanwhile, PQ/nano-TiO2composite-based interior paint exhibited significant DEF of 96.3% compared to that consisting of sole nanoTiO2of 92.0% under visible light illumination. As an abundant mineral resource, PQ would make interior paints with HCHO purifying effect much more efficient and cheaper.
基金Funded by the National Natural Science Foundation of China(No.51579159)
文摘Cell surface of aquatic organisms constitutes a primary site for the interaction and a barrier for the nano-TiO2 biological effects.In the present study,the biological effects of nano-TiO2 on a unicellular green algae Chlamydomonas reinhardtii were studied by observing the changes of the cell surface morphology and functional groups under UV or natural light.By SEM,the cell surface morphology of C.reinhardtii was changed under UV light,nano-TiO2 with UV light or natural light,which indicated that photocatalysis damaged cell surface.It was also observed that cell surface was surrounded by TiO2 nanoparticles.The ATR-FTIR spectra showed that the peaks of functional groups such as C-N,-C=O,-C-O-C and P=O,which were the important components of cell wall and membrane,were all depressed by the photocatalysis of nano-TiO2 under UV light or natural light.The photocatalysis of nano-TiO2 promoted peroxidation of functional groups on the surface of C.reinhardtii cells,which led to the damages of cell wall and membrane.
基金supported by the National Natural Science Foundation of China (Nos.1706222, 51708108 and 51808188)the China Scholarship Council (No.201806090146)+1 种基金China Postdoctoral Science Foundation (No.2018M642151)State Key Laboratory of High Performance Civil Engineering Materials Open Fund (No.2018CEM001).
文摘The existence of electrolytes in aquatic environment on the photocatalytic performance and coagulation of nanodispersed TiO2 hydrosol and the corresponding photocatalytic alteration were investigated by studying cations(Na^+, K^+, Ca^2+, Mg^2+, and Al^3+).The photocatalysis reactions of nano TiO2 with different dosages of electrolytes were measured by monitoring the degradation of Rhodamine B(Rh B) under ultraviolet A(UV-A) irradiation over time.The results showed that the photocatalytic performance of TiO2 was improved by the presence of Al^3+, while the performance was impaired by the other tested cations.The negative influences of divalent ions on the photocatalytic performance of TiO2 were more significant than monovalent ions.The TiO2 sol dispersed stable at nano scale at low concentration of electrolyte(< 0.01 mol/L) with slight change of pH, and coagulated into micro sizes at high concentration of electrolytes(> 0.1 mol/L) with larger increase or decrease of pH.The positive effects of Al^3+on the photodegradation rate of Rh B might relate to the strong hydrolytic action of Al^3+in aquatic solutions.The photocatalytic processes of TiO2 in the presence of all ions followed the Langmuir-Hinshelwood model, and the reaction kinetic constant was increased with the decrease of pH caused by different cations.These work suggested a new perspective about the relationship between coagulation and photocatalytic performance of TiO2 hydrosols in electrolyte with hydrolysable cations, which demonstrated that TiO2 hydrosols may be suitable as photocatalysts in aquatic environments.
文摘Nano-TiO2 photocatalytic oxidation was used to perform the advanced treatment of biologically treated chemical comprehensive wastewater. The effects of reaction time,nano-TiO2 dosage and initial p H of the wastewater on the removal rate of COD were tested. The GC/MS and EEM techniques were used to qualitatively analyze organic compounds in the wastewater before and after treatment. The result showed that after the biologically treated chemical comprehensive wastewater was treated by nano-TiO2 photocatalytic oxidation under the conditions of reaction time 3 h,nano-TiO2 dosage 8 g/L,and pH 8. 0,the effluent COD was 61. 9 mg/L and its removal rate was 63. 8%. Additionally,the species of organic pollutants reduced from 12 to 6. Meanwhile,the content of humic-like and fulvic-like substances dropped dramatically.
基金supported by Sakarya University with Project No. BAPK-2012-50-01-018
文摘TiO2 nanotubes on Ti metal surface were prepared by the electrochemical anodization method. Then, nanosilver was deposited onto the nanotubes by the electroless dip coating and the anodization. The obtained TiO2 nanotubes were examined by using scanning electron microscopy, atomic force microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, cyclic voltammetry, and UV–Vis. The electrochemical band gap(Eg^CV) of the nanosilver-coated TiO2 nanotubes prepared by the anodization was found as 1.54 eV. Using the UV–Vis measurements, the optical band gap energy(Eg^op.) was calculated as 1.51 eV for the Ag/TiO2 nanotubes obtained by electroless dip coating. The electrical conductivity of the TiO2 nanotubes also increased from 3.0 × 10^-4 to 34.7 S/cm after nano Ag deposition by the anodization method.These Ag/TiO2 nanotubes with low band gap and high electrical conductivity are desirable for the applications in electronics, Li-ion batteries, and solar cells.