The successful applications of two-dimensional(2 D)transition metal dichalcogenides highly rely on rational regulation of their electronic properties.The nondestructive and controllable doping strategy is of great imp...The successful applications of two-dimensional(2 D)transition metal dichalcogenides highly rely on rational regulation of their electronic properties.The nondestructive and controllable doping strategy is of great importance to implement 2 D materials in electronic devices.Herein,we propose a straightforward and effective method to realize controllable n-type doping in WSe_(2)monolayer by electron beam irradiation.Electrical measurements and photoluminescence(PL)spectra verify the strong n-doping in electron beam-treated WSe_(2)monolayers.The n-type doping arises from the generation of Se vacancies and the doping degree is precisely controlled by irradiation fluences.Due to the n-dopinginduced narrowing of the Schottky barrier,the current of back-gated monolayer WSe_(2)is enhanced by an order of magnitude and a$8?increase in the electron filed-effect mobility is observed.Remarkably,it is a moderate method without significant reduction in electrical performance and severe damage to lattice structures even under ultra-high doses of irradiation.展开更多
Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-t...Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-type organic thermoelectric materials and wearable p/n junction thermoelectric devices remains challenging.In this work,two insulated polyamides(PA6 and PA66)that have been widely used as fiber materials are employed as novel dopants for converting p-type single-walled carbon nanotubes(SWCNTs)to n-type thermoelectric materials.Because of the electron transferability of the amide group,polyamide-doped SWCNTs exhibit excellent thermopower values as large as-56.0μV K^(-1) for PA66,and-54.5μV K^(-1) for PA6.Thermoelectric devices with five p/n junctions connected in series are fabricated.The testing device produces a thermoelectric voltage of 43.1 mV and generates 1.85μW thermoelectric power under temperature gradients of approximately 80 K.Furthermore,they display charming capability for temperature recognition and monitoring human activities as sensors.These promising results suggest that the flexible polyamide-doped SWCNT composites herein have high application potential as wearable thermoelectric electronics.展开更多
Solid electrolytes face challenges in solid-state sodium batteries(SSSBs)because of limited ionic conductivity,increased interfacial resistance,and sodium dendrite issues.In this study,we adopted a unique Sn4+doping s...Solid electrolytes face challenges in solid-state sodium batteries(SSSBs)because of limited ionic conductivity,increased interfacial resistance,and sodium dendrite issues.In this study,we adopted a unique Sn4+doping strategy for Na_(3.2)Zr_(2)Si_(2.2)P_(0.8)O_(12)(NZSP)that caused a partial structural transition from the monoclinic(C2/c)phase to the rhombohedral(R-3c)phase in Na_(3.2)Zr_(1.9)Sn_(0.1)Si_(2.2)P_(0.8)O_(12)(NZSnSP1).X-ray diffraction(XRD)patterns and high-resolution transmission electron microscopy analyses were used to confirm this transition,where rhombohedral NZSnSP1 showed an increase in the Na2-O bond length compared with monoclinic NZSnSP1,increasing its triangular bottleneck areas and noticeably enhancing Na+ionic conductivity,a higher Na transference number,and lower electronic conductivity.NZSnSP1 also showed exceptionally high compatibility with Na metal with an increased critical current density,as evidenced by symmetric cell tests.The SSSB,fabricated using Na_(0.9)Zn_(0.22)Fe_(0.3)Mn_(0.48)O_(2)(NZFMO),Na metal,and NZSnSP1 as the cathode,anode,and the solid electrolyte and separator,respectively,maintains 65.86%of retention in the reversible capacity over 300 cycles within a voltage range of 2.0-4.0 V at 25℃ at 0.1 C.The in-situ X-ray diffraction and X-ray absorption analyses of the P and Zr K-edges confirmed that NZSnSP1 remained highly stable before and after electrochemical cycling.This crystal structure modification strategy enables the synthesis of ideal solid electrolytes for practical SSSBs.展开更多
As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)poss...As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)possesses favorable electrochemical properties and thermodynamic stability,its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate,limiting the ORR catalytic activity.In this work,the electronic structure of FeWO_(4)is significantly modulated by introducing phosphorus(P)atoms with abundant valence electrons.The P doping can adjust the electronic structure of FeWO_(4)and then optimize oxygen-containing intermediates'absorption/desorption efficiency to achieve improved ORR activity.Furthermore,the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate(P-FeWO_(4)/PNC).The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P-FeWO_(4)/PNC surface and serves as mass transport channels for reactants and intermediates.The P-FeWO_(4)/PNC demonstrates ORR performance(E1/2=0.86 V vs.RHE).Furthermore,the zinc-air batteries incorporating the P-FeWO_(4)/PNC composite demonstrate an increased peak power density(172.2 mW·cm^(-2)),high specific capacity(810.1 mAh·g^(-1)),and sustained long-term cycling stability lasting up to 240 h.This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts,but also guides their utilization in zinc-air batteries.展开更多
Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of phot...Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of photoelectric devices.However,pristine Mn^(2+):CsPbCl_(3)NCs commonly suffer from low photoluminescence quantum yield(PL QY) and stability issues.Herein,we introduced europium ions(Eu^(3+))into Mn^(2+):CsPbCl_(3)NCs via the thermal injection synthesis method to obtain high performance Eu^(3+)and Mn^(2+)codoped CsPbCl_(3)(Eu^(3+)/Mn^(2+):CsPbCl_(3)) NCs.The maximum PL QY of the resulting Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs reaches up to 90.92%.It is found that the doping of Eu^(3+)ions significantly reduces the non-radiative recombination caused by high defect states,and improves the energy transfer efficiency from exciton to Mn^(2+),thereby boosting the PL performance.Moreover,doping Eu^(3+)ions notably improves the UV-light and water stability of Mn^(2+):CsPbCl_(3)NCs.We further demonstrate the application versatility of Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs in white light emitting diodes(WLEDs) and optical anticounterfeiting applications.This work provides a valuable perspective for the attainment of high performance Mn^(2+):CsPbCl_(3)NCs and lays a foundation for the codoping of other lanthanide ions to adjust the luminescence properties of Mn^(2+):CsPbCl_(3)NCs.展开更多
To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dim...To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dimensional (2D) materials. However, owing to the strong etching effect in transition metal dichalcogenides (TMDCs), it is difficult to controllably dope 2D WSe2 crystals by plasma. Herein, we develop a moderate ammonia plasma treatment method to prepare nitrogen-doped WSe2 with controlled nitrogen content. Interestingly, Raman, photoluminescence, X-ray photoelectron spectroscopy, and electrical Lts reveal abnormal n-doping behavior of nitrogen-doped WSe2, which is attributed to selenium anion vacancy introduced by hydrogen species in ammonia plasma. Nitrogen-doped WSe2 with abnormal n-doping behavior has potential applications in future TMDCs-based electronics.展开更多
While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remai...While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remains a challenge. Herein, by changing the doping positions of heteroatoms in a diindenopyrene skeleton, we report two isomeric boron, sulfur-embedded PAHs, named Anti-B_(2)S_(2) and Syn-B_(2)S_(2), as electron transporting semiconductors. Detailed structure-property relationship studies revealed that the varied heteroatom positions not only change their physicochemical properties, but also largely affect their solid-state packing modes and Lewis base-triggered photophysical responses. With their low-lying frontier molecular orbital levels, n-type characteristics with electron mobilities up to 1.5 × 10^(-3)cm^(2)V^(-1)s^(-1)were achieved in solution-processed organic field-effect transistors. Our work revealed the critical role of controlling heteroatom doping patterns for designing advanced PAHs.展开更多
Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs ha...Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs have recently been controlled extensively by heteroatom doping.Boron atoms have been effectively doped into the structure of CDs due to their similar size to carbon atoms and excellent electron-absorbing ability to further improve the performance of CDs.In this review,we summarize the research progress of boron-doped CDs in recent years from the aspects of doping strategies,effects of boron doping on different performances of CDs and applications.Starting from the two aspects of single boron doping and boron and other atom co-doping,from different precursor materials to different synthesis methods,the doping strategies of boron-doped CDs are reviewed in detail.Then,the effects of boron doping on the fluorescence,phosphorescence and catalytic performance of CDs and applications of boron-doped CDs in optical sensors,information encryption and anti-counterfeiting are discussed.Finally,we further provide a prospect towards the future development of boron-doped CDs.展开更多
We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results i...We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results indicate that Ce doping can alter lattice parameters of the LLZNO,leading to the enhanced lithium ionic conductivity.The Ce,Nb co-doped LLZO(LLZNCO)structure with composition Li_(6.5)La_(3)Zr_(1.5-x)Nb_(0.5)Ce_(x)O_(12)(x=0.125)exhibits a lower activation energy(E_(a)=0.39 eV)than Li_(6.5)La_(3)Zr_(1.5)Nb_(0.5)O_(12)(LLZNO)(E_(a)=0.41 eV).Furthermore,Ce doping leads to an increase in Li~+conductivity from 6.4×10^(-4)to 7×10^(-4)S/cm at room temperature.In addition,we discuss the diffusivity and conductivity of our samples using ab initio molecular dynamics simulations and propose possible mechanisms to explain the enhanced Li-ion conductivity caused by co-doping with Ce and Nb.Our results demonstrate that the LLZNCO ceramics are promising candidates for potential solid-state electrolytes for Li-ion batteries.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not onl...Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity.展开更多
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni...Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.展开更多
Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-depositi...Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.展开更多
Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corros...Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.展开更多
All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat...All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.展开更多
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept...In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.展开更多
Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr...Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.展开更多
Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effect...Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance.展开更多
To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration signific...To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future.展开更多
In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.How...In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries.展开更多
基金supported by the KRDPC(No.2019YFA0308000)National Natural Science Foundation of China(Nos.61927808and 91963130)。
文摘The successful applications of two-dimensional(2 D)transition metal dichalcogenides highly rely on rational regulation of their electronic properties.The nondestructive and controllable doping strategy is of great importance to implement 2 D materials in electronic devices.Herein,we propose a straightforward and effective method to realize controllable n-type doping in WSe_(2)monolayer by electron beam irradiation.Electrical measurements and photoluminescence(PL)spectra verify the strong n-doping in electron beam-treated WSe_(2)monolayers.The n-type doping arises from the generation of Se vacancies and the doping degree is precisely controlled by irradiation fluences.Due to the n-dopinginduced narrowing of the Schottky barrier,the current of back-gated monolayer WSe_(2)is enhanced by an order of magnitude and a$8?increase in the electron filed-effect mobility is observed.Remarkably,it is a moderate method without significant reduction in electrical performance and severe damage to lattice structures even under ultra-high doses of irradiation.
基金supported by the National Natural Science Foundation of China(Project no.51973120)the Natural Science Foun-dation of Guangdong Province(No.2019A1515010613)+1 种基金the Shenzhen Science and Technology Research Grant(Nos.JCYJ20170818093417096 and JCYJ20180305125649693)the Shenzhen Science and Technology Program(No.20220809111527001).
文摘Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-type organic thermoelectric materials and wearable p/n junction thermoelectric devices remains challenging.In this work,two insulated polyamides(PA6 and PA66)that have been widely used as fiber materials are employed as novel dopants for converting p-type single-walled carbon nanotubes(SWCNTs)to n-type thermoelectric materials.Because of the electron transferability of the amide group,polyamide-doped SWCNTs exhibit excellent thermopower values as large as-56.0μV K^(-1) for PA66,and-54.5μV K^(-1) for PA6.Thermoelectric devices with five p/n junctions connected in series are fabricated.The testing device produces a thermoelectric voltage of 43.1 mV and generates 1.85μW thermoelectric power under temperature gradients of approximately 80 K.Furthermore,they display charming capability for temperature recognition and monitoring human activities as sensors.These promising results suggest that the flexible polyamide-doped SWCNT composites herein have high application potential as wearable thermoelectric electronics.
基金supported by the National Research Foundation of Korea(RS-2024-00404414)the National Research Council of Science&Technology(NST,No.GTL24011-000)funded by the Ministry of Science and ICTsupported by the KIST Institutional Program(Project No.2E33270).
文摘Solid electrolytes face challenges in solid-state sodium batteries(SSSBs)because of limited ionic conductivity,increased interfacial resistance,and sodium dendrite issues.In this study,we adopted a unique Sn4+doping strategy for Na_(3.2)Zr_(2)Si_(2.2)P_(0.8)O_(12)(NZSP)that caused a partial structural transition from the monoclinic(C2/c)phase to the rhombohedral(R-3c)phase in Na_(3.2)Zr_(1.9)Sn_(0.1)Si_(2.2)P_(0.8)O_(12)(NZSnSP1).X-ray diffraction(XRD)patterns and high-resolution transmission electron microscopy analyses were used to confirm this transition,where rhombohedral NZSnSP1 showed an increase in the Na2-O bond length compared with monoclinic NZSnSP1,increasing its triangular bottleneck areas and noticeably enhancing Na+ionic conductivity,a higher Na transference number,and lower electronic conductivity.NZSnSP1 also showed exceptionally high compatibility with Na metal with an increased critical current density,as evidenced by symmetric cell tests.The SSSB,fabricated using Na_(0.9)Zn_(0.22)Fe_(0.3)Mn_(0.48)O_(2)(NZFMO),Na metal,and NZSnSP1 as the cathode,anode,and the solid electrolyte and separator,respectively,maintains 65.86%of retention in the reversible capacity over 300 cycles within a voltage range of 2.0-4.0 V at 25℃ at 0.1 C.The in-situ X-ray diffraction and X-ray absorption analyses of the P and Zr K-edges confirmed that NZSnSP1 remained highly stable before and after electrochemical cycling.This crystal structure modification strategy enables the synthesis of ideal solid electrolytes for practical SSSBs.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.22178148 and 22278193)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)possesses favorable electrochemical properties and thermodynamic stability,its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate,limiting the ORR catalytic activity.In this work,the electronic structure of FeWO_(4)is significantly modulated by introducing phosphorus(P)atoms with abundant valence electrons.The P doping can adjust the electronic structure of FeWO_(4)and then optimize oxygen-containing intermediates'absorption/desorption efficiency to achieve improved ORR activity.Furthermore,the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate(P-FeWO_(4)/PNC).The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P-FeWO_(4)/PNC surface and serves as mass transport channels for reactants and intermediates.The P-FeWO_(4)/PNC demonstrates ORR performance(E1/2=0.86 V vs.RHE).Furthermore,the zinc-air batteries incorporating the P-FeWO_(4)/PNC composite demonstrate an increased peak power density(172.2 mW·cm^(-2)),high specific capacity(810.1 mAh·g^(-1)),and sustained long-term cycling stability lasting up to 240 h.This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts,but also guides their utilization in zinc-air batteries.
基金Project supported by the National Natural Science Foundation of China (12174075)the Scientific and Technological Bases and Talents of Guangxi (Guike AD21220016)+1 种基金Guangxi Science and Technology Major Project(AA23073018)the special fund for Guangxi Bagui Scholars。
文摘Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of photoelectric devices.However,pristine Mn^(2+):CsPbCl_(3)NCs commonly suffer from low photoluminescence quantum yield(PL QY) and stability issues.Herein,we introduced europium ions(Eu^(3+))into Mn^(2+):CsPbCl_(3)NCs via the thermal injection synthesis method to obtain high performance Eu^(3+)and Mn^(2+)codoped CsPbCl_(3)(Eu^(3+)/Mn^(2+):CsPbCl_(3)) NCs.The maximum PL QY of the resulting Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs reaches up to 90.92%.It is found that the doping of Eu^(3+)ions significantly reduces the non-radiative recombination caused by high defect states,and improves the energy transfer efficiency from exciton to Mn^(2+),thereby boosting the PL performance.Moreover,doping Eu^(3+)ions notably improves the UV-light and water stability of Mn^(2+):CsPbCl_(3)NCs.We further demonstrate the application versatility of Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs in white light emitting diodes(WLEDs) and optical anticounterfeiting applications.This work provides a valuable perspective for the attainment of high performance Mn^(2+):CsPbCl_(3)NCs and lays a foundation for the codoping of other lanthanide ions to adjust the luminescence properties of Mn^(2+):CsPbCl_(3)NCs.
文摘To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dimensional (2D) materials. However, owing to the strong etching effect in transition metal dichalcogenides (TMDCs), it is difficult to controllably dope 2D WSe2 crystals by plasma. Herein, we develop a moderate ammonia plasma treatment method to prepare nitrogen-doped WSe2 with controlled nitrogen content. Interestingly, Raman, photoluminescence, X-ray photoelectron spectroscopy, and electrical Lts reveal abnormal n-doping behavior of nitrogen-doped WSe2, which is attributed to selenium anion vacancy introduced by hydrogen species in ammonia plasma. Nitrogen-doped WSe2 with abnormal n-doping behavior has potential applications in future TMDCs-based electronics.
基金the National Natural Science Foundation of China (Nos.22375059, 22005133, 51922039 and52273174)Shenzhen Science and Technology Program (No.RCJC20200714114434015)+1 种基金Science and Technology Innovation Program of Hunan Province (No.2020RC5033)National Key Research and Development Program of China (No.2020YFC1807302) for financial support。
文摘While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remains a challenge. Herein, by changing the doping positions of heteroatoms in a diindenopyrene skeleton, we report two isomeric boron, sulfur-embedded PAHs, named Anti-B_(2)S_(2) and Syn-B_(2)S_(2), as electron transporting semiconductors. Detailed structure-property relationship studies revealed that the varied heteroatom positions not only change their physicochemical properties, but also largely affect their solid-state packing modes and Lewis base-triggered photophysical responses. With their low-lying frontier molecular orbital levels, n-type characteristics with electron mobilities up to 1.5 × 10^(-3)cm^(2)V^(-1)s^(-1)were achieved in solution-processed organic field-effect transistors. Our work revealed the critical role of controlling heteroatom doping patterns for designing advanced PAHs.
基金the Youth Talent Program Startup Foundation of Qufu Normal University(No.602601)the Natural Science Foundation of Rizhao(No.RZ2021ZR37)。
文摘Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs have recently been controlled extensively by heteroatom doping.Boron atoms have been effectively doped into the structure of CDs due to their similar size to carbon atoms and excellent electron-absorbing ability to further improve the performance of CDs.In this review,we summarize the research progress of boron-doped CDs in recent years from the aspects of doping strategies,effects of boron doping on different performances of CDs and applications.Starting from the two aspects of single boron doping and boron and other atom co-doping,from different precursor materials to different synthesis methods,the doping strategies of boron-doped CDs are reviewed in detail.Then,the effects of boron doping on the fluorescence,phosphorescence and catalytic performance of CDs and applications of boron-doped CDs in optical sensors,information encryption and anti-counterfeiting are discussed.Finally,we further provide a prospect towards the future development of boron-doped CDs.
基金Project supported by the Scientific Research Startup Fund of Inner Mongolia University of Science and Technology(0303052202)Natural Science Foundation of Inner Mongolia Autonomous Region(2020ZD17,2022FX08)。
文摘We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results indicate that Ce doping can alter lattice parameters of the LLZNO,leading to the enhanced lithium ionic conductivity.The Ce,Nb co-doped LLZO(LLZNCO)structure with composition Li_(6.5)La_(3)Zr_(1.5-x)Nb_(0.5)Ce_(x)O_(12)(x=0.125)exhibits a lower activation energy(E_(a)=0.39 eV)than Li_(6.5)La_(3)Zr_(1.5)Nb_(0.5)O_(12)(LLZNO)(E_(a)=0.41 eV).Furthermore,Ce doping leads to an increase in Li~+conductivity from 6.4×10^(-4)to 7×10^(-4)S/cm at room temperature.In addition,we discuss the diffusivity and conductivity of our samples using ab initio molecular dynamics simulations and propose possible mechanisms to explain the enhanced Li-ion conductivity caused by co-doping with Ce and Nb.Our results demonstrate that the LLZNCO ceramics are promising candidates for potential solid-state electrolytes for Li-ion batteries.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
基金supported by the National Natural Science Foundation of China(Grant Nos.52372150,12088101,and 11991060)the National Key R&D Program of China(Grant No.2022YFB4200305)。
文摘Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity.
基金supported by the National Natural Science Foundation of China(No.51803041)the University and Local Integration Development Project of Yantai,China(No.2022 XDRHXMXK08).
文摘Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.
基金financially supported by the Shandong Provincial Natural Science Foundation(ZR2023LFG005)the National Natural Science Foundation of China(Nos.22479161,52274308 and U22B20144)the Fundamental Research Funds for the Central Universities(No.24CX03012A)。
文摘Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability.
基金National Natural Science Foundation of China (Nos. 42276035, 22309030)Guangdong Basic and Applied Basic Research Foundation (Nos. 2023A1515012589,2020A1515110473)Key Plat Form Programs and Technology Innovation Team Project of Guangdong Provincial Department of Education (Nos. 2019GCZX002, 2020KCXTD011)。
文摘Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling.
基金supported by the National Natural Science Foundation of China(Nos.52172243,52371215)。
文摘All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.
基金supported by Natural Science Foundation of Shandong Province(Nos.ZR2022YQ42,ZR2021JQ15,ZR2021QE011,ZR2021ZD20,2022GJJLJRC-01)Innovative Team Project of Jinan(No.2021GXRC019)the National Natural Science Foundation of China(Nos.52022037,52202366).
文摘In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.
基金supported by the National Natural Science Foundation of China(Nos.52275395,51935014,and 82072084)the Science and Technology Innovation Program of Hunan Province(No.2023RC3046)+4 种基金the Young Elite Scientists Sponsorship Program byCAST(No.2020QNRC002)the NationalKeyResearchand Development Program of China(No.2023YFB4605800)the Central South University Innovation-Driven Research Programme(No.2023CXQD023)the Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University.
文摘Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.
基金National Key Research and Development Program of China (2022YFE0206300)National Natural Science Foundation of China (U21A2081,22075074, 22209047)+3 种基金Guangdong Basic and Applied Basic Research Foundation (2024A1515011620)Hunan Provincial Natural Science Foundation of China (2024JJ5068)Foundation of Yuelushan Center for Industrial Innovation (2023YCII0119)Student Innovation Training Program (S202410532594,S202410532357)。
文摘Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance.
基金supported by the National Key R&D Program of China(Nos.2022YFB3504804 and 2023YFF0718303)the National Natural Science Foundation of China(Nos.51871219,52071324,52031014,and 52401255)+1 种基金Science and Technology Project of Shenyang City(No.22-101-0-27)Liaoning Institute of Science and Technology Doctoral Initiation Fund Project(No.2307B19).
文摘To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future.
基金supported by National Natural Science Foundation of China(Nos.52472194,52101243)Natural Science Foundation of Guangdong Province,China(No.2023A1515012619)the Science and Technology Planning Project of Guangzhou(No.202201010565)。
文摘In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries.