期刊文献+
共找到29,776篇文章
< 1 2 250 >
每页显示 20 50 100
Controllable n-type doping in WSe_(2)monolayer via construction of anion vacancies
1
作者 Mengchen Wang Wenhui Wang +6 位作者 Yong Zhang Xing Liu Lei Gao Xiaoxue Jing Zhenliang Hu Junpeng Lu Zhenhua Ni 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第10期3118-3122,共5页
The successful applications of two-dimensional(2 D)transition metal dichalcogenides highly rely on rational regulation of their electronic properties.The nondestructive and controllable doping strategy is of great imp... The successful applications of two-dimensional(2 D)transition metal dichalcogenides highly rely on rational regulation of their electronic properties.The nondestructive and controllable doping strategy is of great importance to implement 2 D materials in electronic devices.Herein,we propose a straightforward and effective method to realize controllable n-type doping in WSe_(2)monolayer by electron beam irradiation.Electrical measurements and photoluminescence(PL)spectra verify the strong n-doping in electron beam-treated WSe_(2)monolayers.The n-type doping arises from the generation of Se vacancies and the doping degree is precisely controlled by irradiation fluences.Due to the n-dopinginduced narrowing of the Schottky barrier,the current of back-gated monolayer WSe_(2)is enhanced by an order of magnitude and a$8?increase in the electron filed-effect mobility is observed.Remarkably,it is a moderate method without significant reduction in electrical performance and severe damage to lattice structures even under ultra-high doses of irradiation. 展开更多
关键词 WSe_(2) Electron beam irradiation VACANCY doping Schottky barrier
原文传递
Thermoelectric generator and temperature sensor based on polyamide doped n-type single-walled nanotubes toward self-powered wearable electronics
2
作者 Jiye Xiao Zhen Zhang +6 位作者 Zhixiong Liao Jinzhen Huang Dongxia Xian Runhao Zhu Shichao Wang Chunmei Gao Lei Wang 《Journal of Materials Science & Technology》 2025年第4期246-254,共9页
Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-t... Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-type organic thermoelectric materials and wearable p/n junction thermoelectric devices remains challenging.In this work,two insulated polyamides(PA6 and PA66)that have been widely used as fiber materials are employed as novel dopants for converting p-type single-walled carbon nanotubes(SWCNTs)to n-type thermoelectric materials.Because of the electron transferability of the amide group,polyamide-doped SWCNTs exhibit excellent thermopower values as large as-56.0μV K^(-1) for PA66,and-54.5μV K^(-1) for PA6.Thermoelectric devices with five p/n junctions connected in series are fabricated.The testing device produces a thermoelectric voltage of 43.1 mV and generates 1.85μW thermoelectric power under temperature gradients of approximately 80 K.Furthermore,they display charming capability for temperature recognition and monitoring human activities as sensors.These promising results suggest that the flexible polyamide-doped SWCNT composites herein have high application potential as wearable thermoelectric electronics. 展开更多
关键词 n-type thermoelectric material Self-powered sensors Composites Single-walled carbon nanotubes Wearable electronics
原文传递
Novel Sn-Doped NASICON-Type Na_(3.2)Zr_(2)Si_(2.2)P_(0.8)O_(12) Solid Electrolyte With Improved Ionic Conductivity for a Solid-State Sodium Battery
3
作者 Muhammad Akbar Iqra Moeez +6 位作者 Young Hwan Kim Mingony Kim Jiwon Jeong Eunbyoul Lee Ali Hussain Umar Bhatti Jae-Ho Park Kyung Yoon Chung 《Carbon Energy》 2025年第5期45-54,共10页
Solid electrolytes face challenges in solid-state sodium batteries(SSSBs)because of limited ionic conductivity,increased interfacial resistance,and sodium dendrite issues.In this study,we adopted a unique Sn4+doping s... Solid electrolytes face challenges in solid-state sodium batteries(SSSBs)because of limited ionic conductivity,increased interfacial resistance,and sodium dendrite issues.In this study,we adopted a unique Sn4+doping strategy for Na_(3.2)Zr_(2)Si_(2.2)P_(0.8)O_(12)(NZSP)that caused a partial structural transition from the monoclinic(C2/c)phase to the rhombohedral(R-3c)phase in Na_(3.2)Zr_(1.9)Sn_(0.1)Si_(2.2)P_(0.8)O_(12)(NZSnSP1).X-ray diffraction(XRD)patterns and high-resolution transmission electron microscopy analyses were used to confirm this transition,where rhombohedral NZSnSP1 showed an increase in the Na2-O bond length compared with monoclinic NZSnSP1,increasing its triangular bottleneck areas and noticeably enhancing Na+ionic conductivity,a higher Na transference number,and lower electronic conductivity.NZSnSP1 also showed exceptionally high compatibility with Na metal with an increased critical current density,as evidenced by symmetric cell tests.The SSSB,fabricated using Na_(0.9)Zn_(0.22)Fe_(0.3)Mn_(0.48)O_(2)(NZFMO),Na metal,and NZSnSP1 as the cathode,anode,and the solid electrolyte and separator,respectively,maintains 65.86%of retention in the reversible capacity over 300 cycles within a voltage range of 2.0-4.0 V at 25℃ at 0.1 C.The in-situ X-ray diffraction and X-ray absorption analyses of the P and Zr K-edges confirmed that NZSnSP1 remained highly stable before and after electrochemical cycling.This crystal structure modification strategy enables the synthesis of ideal solid electrolytes for practical SSSBs. 展开更多
关键词 ionic conductivity NASICOn-type solid electrolyte phase transition Sn doping solid-state battery
在线阅读 下载PDF
Modulated FeWO_(4)electronic structure via P doping on nitrogen-doped porous carbon for improved oxygen reduction activity in zinc-air batteries
4
作者 Yue Gong Dai-Jie Deng +5 位作者 Huan Wang Jian-Chun Wu Lin-Hua Zhu Cheng Yan He-Nan Li Li Xu 《Rare Metals》 2025年第1期240-252,共13页
As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)poss... As a catalyst of the air cathode in zinc-air batteries,tungstic acid ferrous(FeWO_(4)),a nanoscale transition metal tungstate,shows a broad application prospect in the oxygen reduction reaction(ORR).While FeWO_(4)possesses favorable electrochemical properties and thermodynamic stability,its intrinsic semiconductor characteristics result in a relatively slow electron transfer rate,limiting the ORR catalytic activity.In this work,the electronic structure of FeWO_(4)is significantly modulated by introducing phosphorus(P)atoms with abundant valence electrons.The P doping can adjust the electronic structure of FeWO_(4)and then optimize oxygen-containing intermediates'absorption/desorption efficiency to achieve improved ORR activity.Furthermore,the sodium chloride template is utilized to construct a porous carbon framework for anchoring phosphorus-doped iron tungstate(P-FeWO_(4)/PNC).The porous carbon skeleton provides numerous active sites for the absorption/desorption and redox reactions on the P-FeWO_(4)/PNC surface and serves as mass transport channels for reactants and intermediates.The P-FeWO_(4)/PNC demonstrates ORR performance(E1/2=0.86 V vs.RHE).Furthermore,the zinc-air batteries incorporating the P-FeWO_(4)/PNC composite demonstrate an increased peak power density(172.2 mW·cm^(-2)),high specific capacity(810.1 mAh·g^(-1)),and sustained long-term cycling stability lasting up to 240 h.This research not only contributes to the advancement of cost-effective tungsten-based non-precious metallic ORR catalysts,but also guides their utilization in zinc-air batteries. 展开更多
关键词 Oxygen reduction reaction FeWO_(4) P doping Electronic structure Zinc-air batteries
原文传递
Boosting photoluminescence efficiency and stability of Mn^(2+)-doped CsPbCl_(3) perovskite nanocrystals via europium ion codoping
5
作者 Zhuwei Gu Ke Xing +2 位作者 Sheng Cao Bingsuo Zou Jialong Zhao 《Journal of Rare Earths》 2025年第9期1835-1843,共9页
Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of phot... Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of photoelectric devices.However,pristine Mn^(2+):CsPbCl_(3)NCs commonly suffer from low photoluminescence quantum yield(PL QY) and stability issues.Herein,we introduced europium ions(Eu^(3+))into Mn^(2+):CsPbCl_(3)NCs via the thermal injection synthesis method to obtain high performance Eu^(3+)and Mn^(2+)codoped CsPbCl_(3)(Eu^(3+)/Mn^(2+):CsPbCl_(3)) NCs.The maximum PL QY of the resulting Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs reaches up to 90.92%.It is found that the doping of Eu^(3+)ions significantly reduces the non-radiative recombination caused by high defect states,and improves the energy transfer efficiency from exciton to Mn^(2+),thereby boosting the PL performance.Moreover,doping Eu^(3+)ions notably improves the UV-light and water stability of Mn^(2+):CsPbCl_(3)NCs.We further demonstrate the application versatility of Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs in white light emitting diodes(WLEDs) and optical anticounterfeiting applications.This work provides a valuable perspective for the attainment of high performance Mn^(2+):CsPbCl_(3)NCs and lays a foundation for the codoping of other lanthanide ions to adjust the luminescence properties of Mn^(2+):CsPbCl_(3)NCs. 展开更多
关键词 CsPbCl_(3) Mn doped Eu^(^(3+))ions Photoluminescence quantum yield STABILITY Rare earths
原文传递
Abnormal n-type doping effect in nitrogen-doped tungsten diselenide prepared by moderate ammonia plasma treatment 被引量:2
6
作者 Zhepeng Jin Zhi Cai +1 位作者 Xiaosong Chen Dacheng Wei 《Nano Research》 SCIE EI CAS CSCD 2018年第9期4923-4930,共8页
To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dim... To facilitate potential applications of tungsten diselenide (WSe2) in electronics, controllable doping is of great importance. As an industrially compatible technology, plasma treatment has been used to dope two-dimensional (2D) materials. However, owing to the strong etching effect in transition metal dichalcogenides (TMDCs), it is difficult to controllably dope 2D WSe2 crystals by plasma. Herein, we develop a moderate ammonia plasma treatment method to prepare nitrogen-doped WSe2 with controlled nitrogen content. Interestingly, Raman, photoluminescence, X-ray photoelectron spectroscopy, and electrical Lts reveal abnormal n-doping behavior of nitrogen-doped WSe2, which is attributed to selenium anion vacancy introduced by hydrogen species in ammonia plasma. Nitrogen-doped WSe2 with abnormal n-doping behavior has potential applications in future TMDCs-based electronics. 展开更多
关键词 NITROGEN-DOPED tungsten diselenide n-type doping ammonia plasma anion vacancy
原文传递
Electron-transporting boron-doped polycyclic aromatic hydrocarbons:Facile synthesis and heteroatom doping positions-modulated optoelectronic properties 被引量:1
7
作者 Tingting Huang Zhuanlong Ding +6 位作者 Hao Liu Ping-An Chen Longfeng Zhao Yuanyuan Hu Yifan Yao Kun Yang Zebing Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期447-451,共5页
While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remai... While heteroatom doping serves as a powerful strategy for devising novel polycyclic aromatic hydrocarbons(PAHs), the further fine-tuning of optoelectronic properties via the precisely altering of doping patterns remains a challenge. Herein, by changing the doping positions of heteroatoms in a diindenopyrene skeleton, we report two isomeric boron, sulfur-embedded PAHs, named Anti-B_(2)S_(2) and Syn-B_(2)S_(2), as electron transporting semiconductors. Detailed structure-property relationship studies revealed that the varied heteroatom positions not only change their physicochemical properties, but also largely affect their solid-state packing modes and Lewis base-triggered photophysical responses. With their low-lying frontier molecular orbital levels, n-type characteristics with electron mobilities up to 1.5 × 10^(-3)cm^(2)V^(-1)s^(-1)were achieved in solution-processed organic field-effect transistors. Our work revealed the critical role of controlling heteroatom doping patterns for designing advanced PAHs. 展开更多
关键词 Polycyclic aromatic hydrocarbon Optoelectronic properties Heteroatom doping n-type organic semiconductors Structure–property relationship
原文传递
Boron-doped carbon dots:Doping strategies,performance effects,and applications 被引量:5
8
作者 Qiang Fu Shouhong Sun +2 位作者 Kangzhi Lu Ning Li Zhanhua Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期100-106,共7页
Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs ha... Due to their superior fluorescence,phosphorescence,and catalytic capabilities,carbon dots(CDs),an emerging class of fluorescent carbon nanomaterials,have a wide range of potential applications.The properties of CDs have recently been controlled extensively by heteroatom doping.Boron atoms have been effectively doped into the structure of CDs due to their similar size to carbon atoms and excellent electron-absorbing ability to further improve the performance of CDs.In this review,we summarize the research progress of boron-doped CDs in recent years from the aspects of doping strategies,effects of boron doping on different performances of CDs and applications.Starting from the two aspects of single boron doping and boron and other atom co-doping,from different precursor materials to different synthesis methods,the doping strategies of boron-doped CDs are reviewed in detail.Then,the effects of boron doping on the fluorescence,phosphorescence and catalytic performance of CDs and applications of boron-doped CDs in optical sensors,information encryption and anti-counterfeiting are discussed.Finally,we further provide a prospect towards the future development of boron-doped CDs. 展开更多
关键词 Carbon dots BORON-DOPED Luminescent material doping strategies Performance effects
原文传递
Enhancing ionic conductivity of garnet-type Nb-doped Li_(7)La_(3)Zr_(2)O_(12)by cerium doping
9
作者 Daming Liu Yuan Hou +2 位作者 Chaoke Bulin Ruichao Zhao Bangwen Zhang 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第9期1740-1746,I0004,共8页
We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results i... We investigated the effect of additional doping with Ce on the ionic conductivity of the Nb-doped Li_(7)La_(3)Zr_(2)O_(12)(LLZO)garnet ceramics using a combination of experimental and modeling approaches.Our results indicate that Ce doping can alter lattice parameters of the LLZNO,leading to the enhanced lithium ionic conductivity.The Ce,Nb co-doped LLZO(LLZNCO)structure with composition Li_(6.5)La_(3)Zr_(1.5-x)Nb_(0.5)Ce_(x)O_(12)(x=0.125)exhibits a lower activation energy(E_(a)=0.39 eV)than Li_(6.5)La_(3)Zr_(1.5)Nb_(0.5)O_(12)(LLZNO)(E_(a)=0.41 eV).Furthermore,Ce doping leads to an increase in Li~+conductivity from 6.4×10^(-4)to 7×10^(-4)S/cm at room temperature.In addition,we discuss the diffusivity and conductivity of our samples using ab initio molecular dynamics simulations and propose possible mechanisms to explain the enhanced Li-ion conductivity caused by co-doping with Ce and Nb.Our results demonstrate that the LLZNCO ceramics are promising candidates for potential solid-state electrolytes for Li-ion batteries. 展开更多
关键词 Rare earths Solid state electrolyte Ionic conductivity doping
原文传递
P,N co-doped hollow carbon nanospheres prepared by micellar copolymerization for increased hydrogen evolution in alkaline water 被引量:1
10
作者 HAN Yi-meng XIONG Hao +2 位作者 YANG Jia-ying WANG Jian-gan XU Fei 《新型炭材料(中英文)》 北大核心 2025年第1期211-221,共11页
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka... The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds. 展开更多
关键词 Alkaline hydrogen evolution ELECTROCATALYSTS Hollow carbon nanospheres Dual atoms doping Combined effect
在线阅读 下载PDF
Is p-Type Doping in TeO_(2)Feasible? 被引量:1
11
作者 Zewen Xiao Chen Qiu +1 位作者 Su-Huai Wei Hideo Hosono 《Chinese Physics Letters》 2025年第1期114-122,共9页
Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not onl... Wide-bandgap two-dimensional (2D) β-TeO_(2) has been reported as a high-mobility p-type transparent semiconductor [Nat. Electron. 4 277 (2021)], attracting significant attention. This "breakthrough" not only challenges the conventional characterization of TeO_(2) as an insulator but also conflicts with the anticipated difficulty in hole doping of TeO_(2) by established chemical trends. Notably, the reported Fermi level of 0.9 eV above the valence band maximum actually suggests that the material is an insulator, contradicting the high hole density obtained by Hall effect measurement. Furthermore, the detected residual Se and the possible reduced elemental Te in the 2D β-TeO_(2) samples introduces complexity, considering that elemental Se, Te, and Te_(1−x)Se_(x) themselves are high-mobility p-type semiconductors. Therefore, doubts regarding the true cause of the p-type conductivity observed in the 2D β-TeO_(2) samples arise. In this Letter, we employ density functional theory calculations to illustrate that TeO_(2), whether in its bulk forms of α-, β-, or γ-TeO_(2), or in the 2D β-TeO_(2) nanosheets, inherently exhibits insulating properties and poses challenges in carrier doping due to its shallow conduction band minimum and deep valence band maximum. Our findings shed light on the insulating properties and doping difficulty of TeO_(2), contrasting with the claimed p-type conductivity in the 2D β-TeO_(2) samples, prompting inquiries into the true origin of the p-type conductivity. 展开更多
关键词 doping BREAKTHROUGH attracting
原文传递
Iron-nitrogen-doped porous carbon absorbers constructed from hypercrosslinked ferrocene polymers for efficient electromagnetic wave absorption 被引量:1
12
作者 Yi Hu Yijia Zhou +4 位作者 Lijia Liu Qiang Wang Chunhong Zhang Hao Wei Yudan Wang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期578-590,共13页
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni... Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research. 展开更多
关键词 hypercrosslinked polymers porous carbon iron-nitrogen doping annealing
在线阅读 下载PDF
High-valence Co deposition based on selfcatalysis of lattice Mn doping for robust acid water oxidation 被引量:1
13
作者 Ning Yu Fu-Li Wang +5 位作者 Xin-Yin Jiang Jin-Long Tan Mirabbos Hojamberdiev Han Hu Yong-Ming Chai Bin Dong 《Journal of Energy Chemistry》 2025年第3期208-217,共10页
Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-depositi... Non-precious metal cobalt-based oxide inevitably dissolves for acid oxygen evolution reaction(OER).Designing an efficient deposition channel for leaching cobalt species is a promising approach.The dissolution-deposition equilibrium of Co is achieved by doping Mn in the lattice of LaCo_(1-x)Mn_(x)O_(3),prolonging the lifespan in acidic conditions by 14 times.The lattice doping of Mn produces a strain that enhances the adsorption capacity of OH^(-).The self-catalysis of Mn causes the leaching Co to be deposited in the form of CoO_(2),which ensures that the long-term stability of LaCo_(1-x)Mn_(x)O_(3)is 70 h instead of 5 h for LaCoO_(3).Mn doping enhances the deprotonation of^(*)OOH→O_(2)in acidic environments.Notably,the over-potential of optimized LaCo_(1-x)Mn_(x)O_(3)is 345 mV at 10 mA cm^(-2)for acidic OER.This work presents a promising method for developing noble metal-free catalysts that enhance the acidic OER activity and stability. 展开更多
关键词 LaCoO_(3) Mn doping Acidic environment Dissolution-deposition equilibrium
在线阅读 下载PDF
Ru doping triggering reconstruction of cobalt phosphide for coupling glycerol electrooxidation with seawater electrolysis 被引量:1
14
作者 Binglu Deng Jie Shen +4 位作者 Jinxing Lu Chuqiang Huang Zhuoyuan Chen Feng Peng Yunpeng Liu 《Journal of Energy Chemistry》 2025年第1期317-326,共10页
Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corros... Seawater electrolysis is a promising approach for sustainable energy without relying on precious freshwater.However,the large-scale seawater electrolysis is hindered by low catalytic efficiency and severe anode corrosion caused by the harmful chlorine.In contrast to the oxygen evolution reaction (OER)and chlorin ion oxidation reaction (ClOR),glycerol oxidation reaction (GOR) is more thermodynamically and kinetically favorable alternative.Herein,a Ru doping cobalt phosphide (Ru-CoP_(2)) is proposed as a robust bifunctional electrocatalyst for seawater electrolysis and GOR,for the concurrent productions of hydrogen and value-added formate.The in situ and ex situ characterization analyses demonstrated that Ru doping featured in the dynamic reconstruction process from Ru-CoP_(2)to Ru-CoOOH,accounting for the superior GOR performance.Further coupling GOR with hydrogen evolution was realized by employing Ru-CoP_(2)as both anode and cathode,requiring only a low voltage of 1.43 V at 100 mA cm^(-2),which was 250 m V lower than that in alkaline seawater.This work guides the design of bifunctional electrocatalysts for energy-efficient seawater electrolysis coupled with biomass resource upcycling. 展开更多
关键词 Glycerol electrooxidation Hydrogen evolution Ru doping Cobalt phosphide Bifunctional electrocatalysts
在线阅读 下载PDF
Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes 被引量:2
15
作者 Han Yan Jingming Yao +7 位作者 Zhangran Ye Qiaoquan Lin Ziqi Zhang Shulin Li Dawei Song Zhenyu Wang Chuang Yu Long Zhang 《Chinese Chemical Letters》 2025年第1期610-617,共8页
All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat... All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs. 展开更多
关键词 Solid electrolytes Li halides Li_(2)ZrCl_(6) Li argyrodites Fluorine doping
原文传递
Iron-doping regulated light absorption and active sites in LiTaO_(3) single crystal for photocatalytic nitrogen reduction 被引量:1
16
作者 Zhenfei Tang Yunwu Zhang +10 位作者 Zhiyuan Yang Haifeng Yuan Tong Wu Yue Li Guixiang Zhang Xingzhi Wang Bin Chang Dehui Sun Hong Liu Lili Zhao Weijia Zhou 《Chinese Chemical Letters》 2025年第3期206-211,共6页
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept... In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes. 展开更多
关键词 Nitrogen reduction PHOTOCATALYSIS Fe doping Single crystal Lithium tantalate crystal
原文传递
Multifactorial impacts of B-doping on Fe_(81)Ga_(19) alloys prepared by laser-beam powder bed fusion:Microstructure,magnetostriction,and osteogenesis 被引量:1
17
作者 Chengde Gao Liyuan Wang +2 位作者 Youwen Deng Shuping Peng Cijun Shuai 《Journal of Materials Science & Technology》 2025年第2期14-26,共13页
Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr... Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications. 展开更多
关键词 Fe-Ga alloys Laser-beam powder bed fusion Boron doping MAGNETOSTRICTION CYTOCOMPATIBILITY
原文传递
Multi boron-doping effects in hard carbon toward enhanced sodium ion storage 被引量:1
18
作者 Peng Zheng Wang Zhou +7 位作者 Ying Mo Biao Zheng Miaomiao Han Qin Zhong Wenwen Yang Peng Gao Lezhi Yang Jilei Liu 《Journal of Energy Chemistry》 2025年第1期730-738,共9页
Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effect... Hard carbon (HC) has been considered as promising anode material for sodium-ion batteries (SIBs).The optimization of hard carbon’s microstructure and solid electrolyte interface (SEI) property are demonstrated effective in enhancing the Na+storage capability,however,a one-step regulation strategy to achieve simultaneous multi-scale structures optimization is highly desirable.Herein,we have systematically investigated the effects of boron doping on hard carbon’s microstructure and interface chemistry.A variety of structure characterizations show that appropriate amount of boron doping can increase the size of closed pores via rearrangement of carbon layers with improved graphitization degree,which provides more Na+storage sites.In-situ Fourier transform infrared spectroscopy/electrochemical impedance spectroscopy (FTIR/EIS) and X-ray photoelectron spectroscopy (XPS) analysis demonstrate the presence of more BC3and less B–C–O structures that result in enhanced ion diffusion kinetics and the formation of inorganic rich and robust SEI,which leads to facilitated charge transfer and excellent rate performance.As a result,the hard carbon anode with optimized boron doping content exhibits enhanced rate and cycling performance.In general,this work unravels the critical role of boron doping in optimizing the pore structure,interface chemistry and diffusion kinetics of hard carbon,which enables rational design of sodium-ion battery anode with enhanced Na+storage performance. 展开更多
关键词 Hard carbon Sodium-ion batteries Boron doping Pore structure Electrode/electrolyte interphases
在线阅读 下载PDF
Electromagnetic wave absorption and corrosion resistance performance of carbon nanoclusters/Ce-Mn codoped barium ferrite composite materials 被引量:1
19
作者 Bo Li Lin Ma +7 位作者 Sinan Li Jiewu Cui Xiaohui Liang Wei Sun Pengjie Zhang Nan Huang Song Ma Zhidong Zhang 《International Journal of Minerals,Metallurgy and Materials》 2025年第3期699-709,共11页
To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration signific... To realize the application of electromagnetic wave absorption(EWA)devices in humid marine environments,bifunctional EWA materials with better EWA capacities and anticorrosion properties have great exploration significance and systematic research re-quirements.By utilizing the low-cost and excellent magnetic and stable chemical characteristics of barium ferrite(BaFe_(12)O_(19))and using the high dielectric loss and excellent chemical inertia of nanocarbon clusters,a new type of nanocomposites with carbon nanoclusters en-capsulating BaFe_(12)O_(19)was designed and synthesized by combining an impregnation method and a high-temperature calcination strategy.Furthermore,Ce-Mn ions were introduced into the BaFe_(12)O_(19)lattice to improve the dielectric and magnetic properties of BaFe_(12)O_(19)cores significantly,and the energy band structure of the doped lattice and the orders of Ce replacing Fe sites were calculated.Benefiting from Ce-Mn ion doping and carbon nanocluster encapsulation,the composite material exhibited excellent dual functionality of corrosion resist-ance and EWA.When BaCe_(0.2)Mn_(0.3)Fe_(11.5)O_(19)-C(BCM-C)was calcined at 600°C,the minimum reflection loss of-20.1 dB was achieved at 14.43 GHz.The Ku band’s effective absorption bandwidth of 4.25 GHz was achieved at an absorber thickness of only 1.3 mm.The BCM-C/polydimethylsiloxane coating had excellent corrosion resistance in the simulated marine environment(3.5wt%NaCl solution).The|Z|0.01Hz value of BCM-C remained at 106Ω·cm^(2)after 12 soaking days.The successful preparation of the BaFe_(12)O_(19)composite en-capsulated with carbon nanoclusters provides new insights into the preparation of multifunctional absorbent materials and the fabrication of absorbent devices applied in humid marine environments in the future. 展开更多
关键词 electromagnetic wave absorption ANTICORROSION barium ferrite cerium and manganese doping carbon nanoclusters
在线阅读 下载PDF
Multiple yolks-shell cobalt phosphosulfide nanocrystals encapsulating into rich heteroatoms co-doped carbon frameworks for advanced sodium/potassium ion batteries 被引量:1
20
作者 Yining Li Shimei Wu +3 位作者 Lantao Chen Haosen Fan Yufei Zhang Lingxing Zeng 《Chinese Chemical Letters》 2025年第9期678-683,共6页
In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.How... In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries. 展开更多
关键词 Yolks-shell cobalt phosphosulfate Hetero-atoms doping Synergistic effect Sodium-ion batteries Potassium ion batteries
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部