The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction di...The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.展开更多
The oscillations of a class of vector parabolic partial differential equations with continuous distribution arguments are studied.By employing the concept of H-oscillation and the method of reducing dimension with inn...The oscillations of a class of vector parabolic partial differential equations with continuous distribution arguments are studied.By employing the concept of H-oscillation and the method of reducing dimension with inner product,the multi-dimensional oscillation problems are changed into the problems of which one-dimensional functional differential inequalities have not eventually positive solution.Some new sufficient conditions for the H-oscillation of all solutions of the equations are obtained under Dirichlet boundary condition,where H is a unit vector of RM.展开更多
Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The comp...Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The complete energy spectra of the consigned system is obtained by computing and adding energy eigenvalues for ground state, for large " r" and for small " r". From this analysis, the mass spectra of heavy quarkonia is derived in three dimensions. Our analytical and numerical results are in good correspondence with other experimental and theoretical studies.展开更多
The solutions of the Laplace equation in n-dimensional space are studied. The angular eigenfunctions have the form of associated Jacob/polynomials. The radial solution of the Helmholtz equation is derived.
Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical descript...Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical description of the gas. In this paper, based on the analogy between the shallow water wave equations and the gas dynamic equations, we develop an explicit KFVS method for simulating the shallow water wave equations. A 1D steady flow and a 2D unsteady flow are presented to show the robust and accuracy of the KFVS scheme.展开更多
We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown th...We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown that the initial set of the Einstein and spinor field equations with a power-law nonlinearity have regular solutions with a localized energy density of the spinor field only if m=0 (m is the mass parameter in the spinor field equations). Equations with power and polynomial nonlinearities are studied in detail. In this case, a soliton-like configuration has negative energy. We have also obtained exact static plane-symmetric solutions to the above spinor field equations in flat space-time. It is proved that in this case soliton-like solutions are absent.展开更多
This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitra...This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.展开更多
In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix eleme...In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix elements are also derived.展开更多
In this article, we prove that the Cauchy problem for a N-dimensional system of nonlinear wave equations…… admits a unique global generalized solution in ……and a unique global classical solution in…… the suffici...In this article, we prove that the Cauchy problem for a N-dimensional system of nonlinear wave equations…… admits a unique global generalized solution in ……and a unique global classical solution in…… the sufficient conditions of the blow up of the solution in finite time are given, and also two examples are given.展开更多
The fractional quadric-cubic coupled nonlinear Schrodinger equation is concerned,and vector symmetric and antisymmetric soliton solutions are obtained by the square operator method.The relationship between the Lé...The fractional quadric-cubic coupled nonlinear Schrodinger equation is concerned,and vector symmetric and antisymmetric soliton solutions are obtained by the square operator method.The relationship between the Lévy index and the amplitudes of vector symmetric and antisymmetric solitons is investigated.Two components of vector symmetric and antisymmetric solitons show a positive and negative trend with the Lévy index,respectively.The stability intervals of these solitons and the propagation constants corresponding to the maximum and minimum instability growth rates are studied.Results indicate that vector symmetric solitons are more stable and have better interference resistance than vector antisymmetric solitons.展开更多
Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi...Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.展开更多
A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivec...A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivector can be obtained from a potential function that is closely related to the scalar and the vector potentials of classical electromagnetics. Additionally it is shown that the gauge transformations of the new multivector and its potential function and the Lagrangian density of the electromagnetic field are in agreement with the transformation rules of the second-rank antisymmetric electromagnetic field tensor, in contrast to the results obtained by applying other versions of Clifford algebras.展开更多
Based upon the Hellinger-Reissner (H-R) mixed variational principle for three-dimensional elastic bodies, the modified H-R mixed variational theorem for magnetoelectroelastic bodies was established. The state-vector e...Based upon the Hellinger-Reissner (H-R) mixed variational principle for three-dimensional elastic bodies, the modified H-R mixed variational theorem for magnetoelectroelastic bodies was established. The state-vector equation of magnetoelectroelastic plates was derived from the proposed theorem by performing the variational operations. To lay a theoretical basis of the semi-analytical solution applied with the magnetoelectroelastic plates, the state-vector equation for the discrete element in plane was proposed through the use of the proposed principle. Finally, it is pointed out that the modified H-R mixed variational principle for pure elastic, single piezoelectric or single piezomagnetic bodies are the special cases of the present variational theorem.展开更多
The profile equations of geometric optics are described in a form invariant under the natural transformations of first order systems of partial differential equations. This allows us to prove that various strategies f...The profile equations of geometric optics are described in a form invariant under the natural transformations of first order systems of partial differential equations. This allows us to prove that various strategies for computing profile equations are equivalent. We prove that if L generates an evolution on L2 the same is true of the profile equations. We prove that the characteristic polynomial of the profile equations is the localization of the characteristic polynomial of the background operator at (y, dφ(y)) where φ is the background phase. We prove that the propagation cones of the profile equations are subsets of the propagation cones of the background operator.展开更多
In this paper,some existence results for the fourth order nonlinear subelliptic equations on the Heisenberg group are given by means of variational methods.
For electromagnetic governing equations formulated by magnetic vector potential and electric scalar potential,its detailed numerical implementation is achieved by using meshless method and Galerkin approach.And essent...For electromagnetic governing equations formulated by magnetic vector potential and electric scalar potential,its detailed numerical implementation is achieved by using meshless method and Galerkin approach.And essential boundary and interface condition of electromagnetic field are imposed by means of Lagrange multiplier method.Furthermore,the influences of interpolation point number at essential boundary and interface on computational results are also discussed.Examples are given to validate the effects of meshless method and Lagrange multiplier approach for electromagnetic field.展开更多
We solve the Duffin-Kemmer-Petiau (DKP) equation with a non-minimal vector Yukawa potential in (1+1)- dimensional spa^e-time for spin-1 particles. The Nikiforov Uvarov method is used in the calculations, and the ...We solve the Duffin-Kemmer-Petiau (DKP) equation with a non-minimal vector Yukawa potential in (1+1)- dimensional spa^e-time for spin-1 particles. The Nikiforov Uvarov method is used in the calculations, and the eigen- functions as well as the energy eigenvalues are obtained in a proper Pekeris-type approximation.展开更多
The generalized product bi-conjugate gradient(GPBiCG(m,l))method has been recently proposed as a hybrid variant of the GPBi CG and the Bi CGSTAB methods to solve the linear system Ax=b with non-symmetric coefficient m...The generalized product bi-conjugate gradient(GPBiCG(m,l))method has been recently proposed as a hybrid variant of the GPBi CG and the Bi CGSTAB methods to solve the linear system Ax=b with non-symmetric coefficient matrix,and its attractive convergence behavior has been authenticated in many numerical experiments.By means of the Kronecker product and the vectorization operator,this paper aims to develop the GPBi CG(m,l)method to solve the general matrix equation■ and the general discrete-time periodic matrix equations■ which include the well-known Lyapunov,Stein,and Sylvester matrix equations that arise in a wide variety of applications in engineering,communications and scientific computations.The accuracy and efficiency of the extended GPBi CG(m,l)method assessed against some existing iterative methods are illustrated by several numerical experiments.展开更多
in this work,we study the quasilinear initial-boundary value problem , where is a system of real smooth vector fields which is defined on an open domain M of R'', and satisfies the Hormanderls condition,.Assu...in this work,we study the quasilinear initial-boundary value problem , where is a system of real smooth vector fields which is defined on an open domain M of R'', and satisfies the Hormanderls condition,.Assume that is non characteristic for the system X,,..',Xm. Under some hypothesis for the boundary of domain and the elliptic structure condition for nonlinear coerfficients Aij, Bj, C,(i, j= 1, ..', m), we have proved that the existence and regularity of solution for aboveinitialboudary value problems.展开更多
In this note, we are concerned with the global singularity structures of weak solutions to 4 - D semilinear dispersive wave equations whose initial data are chosen to be singular at a single point, Combining Strichart...In this note, we are concerned with the global singularity structures of weak solutions to 4 - D semilinear dispersive wave equations whose initial data are chosen to be singular at a single point, Combining Strichartz's inequality with the commutator argument techniques, we show that the weak solutions stay globally conormal if the Cauchy data are conormal展开更多
基金supported by the National Natural Science Foundation of China(Grant No.91130013)the Open Foundation of State Key Laboratory of HighPerformance Computing of China
文摘The energy preserving average vector field (AVF) method is applied to the coupled Schr6dinger-KdV equations. Two energy preserving schemes are constructed by using Fourier pseudospectral method in space direction discretization. In order to accelerate our simulation, the split-step technique is used. The numerical experiments show that the non-splitting scheme and splitting scheme are both effective, and have excellent long time numerical behavior. The comparisons show that the splitting scheme is faster than the non-splitting scheme, but it is not as good as the non-splitting scheme in preserving the invariants.
基金Supported by the Science Research Foundation of Administration of Education of Hunan Province(07C164)
文摘The oscillations of a class of vector parabolic partial differential equations with continuous distribution arguments are studied.By employing the concept of H-oscillation and the method of reducing dimension with inner product,the multi-dimensional oscillation problems are changed into the problems of which one-dimensional functional differential inequalities have not eventually positive solution.Some new sufficient conditions for the H-oscillation of all solutions of the equations are obtained under Dirichlet boundary condition,where H is a unit vector of RM.
基金University Grant Commission(UGC) INDIA for providing the financial assistance in terms of UGC-SRF
文摘Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The complete energy spectra of the consigned system is obtained by computing and adding energy eigenvalues for ground state, for large " r" and for small " r". From this analysis, the mass spectra of heavy quarkonia is derived in three dimensions. Our analytical and numerical results are in good correspondence with other experimental and theoretical studies.
基金Supported by the Nationa1 Natural Science Foundation of China under Grant No.10874018"the Fundamental Research Funds for the Central Universities"
文摘The solutions of the Laplace equation in n-dimensional space are studied. The angular eigenfunctions have the form of associated Jacob/polynomials. The radial solution of the Helmholtz equation is derived.
基金Foundation item:Supported by the National Key Grant Program of Basic(2002CCA01200)original funding of Jilin Universitythe Project-sponsord by SRF for ROCS,SME
文摘Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical description of the gas. In this paper, based on the analogy between the shallow water wave equations and the gas dynamic equations, we develop an explicit KFVS method for simulating the shallow water wave equations. A 1D steady flow and a 2D unsteady flow are presented to show the robust and accuracy of the KFVS scheme.
文摘We have obtained exact static plane-symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of invariant , taking into account their own gravitational field. It is shown that the initial set of the Einstein and spinor field equations with a power-law nonlinearity have regular solutions with a localized energy density of the spinor field only if m=0 (m is the mass parameter in the spinor field equations). Equations with power and polynomial nonlinearities are studied in detail. In this case, a soliton-like configuration has negative energy. We have also obtained exact static plane-symmetric solutions to the above spinor field equations in flat space-time. It is proved that in this case soliton-like solutions are absent.
文摘This paper deals with an extension of a previous work [Gravitation & Cosmology, Vol. 4, 1998, pp 107-113] to exact spherical symmetric solutions to the spinor field equations with nonlinear terms which are arbitrary functions of S=ψψ, taking into account their own gravitational field. Equations with power and polynomial nonlinearities are studied in detail. It is shown that the initial set of the Einstein and spinor field equations with a power nonlinearity has regular solutions with spinor field localized energy and charge densities. The total energy and charge are finite. Besides, exact solutions, including soliton-like solutions, to the spinor field equations are also obtained in flat space-time.
文摘In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix elements are also derived.
基金supported by Tianyuan Youth Foundation of Mathematics (11226177)the National Natural Science Foundation of China (11271336 and 11171311)Foundation of He’nan Educational Committee (2009C110006)
文摘In this article, we prove that the Cauchy problem for a N-dimensional system of nonlinear wave equations…… admits a unique global generalized solution in ……and a unique global classical solution in…… the sufficient conditions of the blow up of the solution in finite time are given, and also two examples are given.
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LR20A050001)National Natural Science Foundation of China(No.12075210)the Scientific Research and Developed Fund of Zhejiang A&F University(Grant No.2021FR0009)。
文摘The fractional quadric-cubic coupled nonlinear Schrodinger equation is concerned,and vector symmetric and antisymmetric soliton solutions are obtained by the square operator method.The relationship between the Lévy index and the amplitudes of vector symmetric and antisymmetric solitons is investigated.Two components of vector symmetric and antisymmetric solitons show a positive and negative trend with the Lévy index,respectively.The stability intervals of these solitons and the propagation constants corresponding to the maximum and minimum instability growth rates are studied.Results indicate that vector symmetric solitons are more stable and have better interference resistance than vector antisymmetric solitons.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.201822011)the National Key R&D Program of China(No.2018YFC1405900)+1 种基金the National Natural Science Foundation of China(Nos.41674118 and 41574105)the National Science and Technology Major Project(No.2016ZX05027002)。
文摘Accuracy of angle-domain common-image gathers(ADCIGs)is the key to multiwave AVA inversion and migration velocity analysis,and of which Poynting vectors of pure P-and S-wave are the decisive factors in obtaining multi-component seismic data ADCIGs.A Poynting vector can be obtained from conventional velocity-stress elastic wave equations,but it focused on the propagation direction of mixed P-and S-wave fields,and neither on the propagation direction of the P-wave nor the direction of the S-wave.The Poynting vectors of pure P-or pure S-wave can be calculated from first-order velocity-dilatation-rotation equations.This study presents a method of extracting ADCIGs based on first order velocitydilatation-rotation elastic wave equations reverse-time migration algorithm.The method is as follows:calculating the pure P-wave Poynting vector of source and receiver wavefields by multiplication of P-wave particle-velocity vector and dilatation scalar,calculating the pure S-wave Poynting vector by vector multiplying S-wave particle-velocity vector and rotation vector,selecting the Poynting vector at the time of maximum P-wave energy of source wavefield as the propagation direction of incident P-wave,and obtaining the reflected P-wave(or converted S-wave)propagation direction of the receiver wavefield by the Poynting vector at the time of maximum P-(S-)wave energy in each grid point.Then,the P-wave incident angle is computed by the two propagation directions.Thus,the P-and S-wave ADGICs can obtained Numerical tests show that the proposed method can accurately compute the propagation direction and incident angle of the source and receiver wavefields,thereby achieving high-precision extraction of P-and S-wave ADGICs.
文摘A new unification of the Maxwell equations is given in the domain of Clifford algebras with in a fashion similar to those obtained with Pauli and Dirac algebras. It is shown that the new electromagnetic field multivector can be obtained from a potential function that is closely related to the scalar and the vector potentials of classical electromagnetics. Additionally it is shown that the gauge transformations of the new multivector and its potential function and the Lagrangian density of the electromagnetic field are in agreement with the transformation rules of the second-rank antisymmetric electromagnetic field tensor, in contrast to the results obtained by applying other versions of Clifford algebras.
基金Project supported by the National Natural Science Foundation of China (No. 10072038)the Special Fund for PhD Program of Education Ministry of China (No. 2000005616)
文摘Based upon the Hellinger-Reissner (H-R) mixed variational principle for three-dimensional elastic bodies, the modified H-R mixed variational theorem for magnetoelectroelastic bodies was established. The state-vector equation of magnetoelectroelastic plates was derived from the proposed theorem by performing the variational operations. To lay a theoretical basis of the semi-analytical solution applied with the magnetoelectroelastic plates, the state-vector equation for the discrete element in plane was proposed through the use of the proposed principle. Finally, it is pointed out that the modified H-R mixed variational principle for pure elastic, single piezoelectric or single piezomagnetic bodies are the special cases of the present variational theorem.
文摘The profile equations of geometric optics are described in a form invariant under the natural transformations of first order systems of partial differential equations. This allows us to prove that various strategies for computing profile equations are equivalent. We prove that if L generates an evolution on L2 the same is true of the profile equations. We prove that the characteristic polynomial of the profile equations is the localization of the characteristic polynomial of the background operator at (y, dφ(y)) where φ is the background phase. We prove that the propagation cones of the profile equations are subsets of the propagation cones of the background operator.
文摘In this paper,some existence results for the fourth order nonlinear subelliptic equations on the Heisenberg group are given by means of variational methods.
基金the National Natural Science Foundation of China(No.50875169)
文摘For electromagnetic governing equations formulated by magnetic vector potential and electric scalar potential,its detailed numerical implementation is achieved by using meshless method and Galerkin approach.And essential boundary and interface condition of electromagnetic field are imposed by means of Lagrange multiplier method.Furthermore,the influences of interpolation point number at essential boundary and interface on computational results are also discussed.Examples are given to validate the effects of meshless method and Lagrange multiplier approach for electromagnetic field.
文摘We solve the Duffin-Kemmer-Petiau (DKP) equation with a non-minimal vector Yukawa potential in (1+1)- dimensional spa^e-time for spin-1 particles. The Nikiforov Uvarov method is used in the calculations, and the eigen- functions as well as the energy eigenvalues are obtained in a proper Pekeris-type approximation.
基金Supported by the National Natural Sciences Foundation of China(Grant Nos.11501079 11571061)Part by the Higher Education Commission of Egypt
文摘The generalized product bi-conjugate gradient(GPBiCG(m,l))method has been recently proposed as a hybrid variant of the GPBi CG and the Bi CGSTAB methods to solve the linear system Ax=b with non-symmetric coefficient matrix,and its attractive convergence behavior has been authenticated in many numerical experiments.By means of the Kronecker product and the vectorization operator,this paper aims to develop the GPBi CG(m,l)method to solve the general matrix equation■ and the general discrete-time periodic matrix equations■ which include the well-known Lyapunov,Stein,and Sylvester matrix equations that arise in a wide variety of applications in engineering,communications and scientific computations.The accuracy and efficiency of the extended GPBi CG(m,l)method assessed against some existing iterative methods are illustrated by several numerical experiments.
文摘in this work,we study the quasilinear initial-boundary value problem , where is a system of real smooth vector fields which is defined on an open domain M of R'', and satisfies the Hormanderls condition,.Assume that is non characteristic for the system X,,..',Xm. Under some hypothesis for the boundary of domain and the elliptic structure condition for nonlinear coerfficients Aij, Bj, C,(i, j= 1, ..', m), we have proved that the existence and regularity of solution for aboveinitialboudary value problems.
基金Supported by the National Natural Science Foundation of China the Doctoral Foundation of NEM of China
文摘In this note, we are concerned with the global singularity structures of weak solutions to 4 - D semilinear dispersive wave equations whose initial data are chosen to be singular at a single point, Combining Strichartz's inequality with the commutator argument techniques, we show that the weak solutions stay globally conormal if the Cauchy data are conormal