期刊文献+
共找到1,203篇文章
< 1 2 61 >
每页显示 20 50 100
Underwater Image Classification Based on EfficientnetB0 and Two-Hidden-Layer Random Vector Functional Link
1
作者 ZHOU Zhiyu LIU Mingxuan +2 位作者 JI Haodong WANG Yaming ZHU Zefei 《Journal of Ocean University of China》 CAS CSCD 2024年第2期392-404,共13页
The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a c... The ocean plays an important role in maintaining the equilibrium of Earth’s ecology and providing humans access to a wealth of resources.To obtain a high-precision underwater image classification model,we propose a classification model that combines an EfficientnetB0 neural network and a two-hidden-layer random vector functional link network(EfficientnetB0-TRVFL).The features of underwater images were extracted using the EfficientnetB0 neural network pretrained via ImageNet,and a new fully connected layer was trained on the underwater image dataset using the transfer learning method.Transfer learning ensures the initial performance of the network and helps in the development of a high-precision classification model.Subsequently,a TRVFL was proposed to improve the classification property of the model.Net construction of the two hidden layers exhibited a high accuracy when the same hidden layer nodes were used.The parameters of the second hidden layer were obtained using a novel calculation method,which reduced the outcome error to improve the performance instability caused by the random generation of parameters of RVFL.Finally,the TRVFL classifier was used to classify features and obtain classification results.The proposed EfficientnetB0-TRVFL classification model achieved 87.28%,74.06%,and 99.59%accuracy on the MLC2008,MLC2009,and Fish-gres datasets,respectively.The best convolutional neural networks and existing methods were stacked up through box plots and Kolmogorov-Smirnov tests,respectively.The increases imply improved systematization properties in underwater image classification tasks.The image classification model offers important performance advantages and better stability compared with existing methods. 展开更多
关键词 underwater image classification EfficientnetB0 random vector functional link convolutional neural network
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
2
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Fully Distributed Learning for Deep Random Vector Functional-Link Networks
3
作者 Huada Zhu Wu Ai 《Journal of Applied Mathematics and Physics》 2024年第4期1247-1262,共16页
In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations a... In the contemporary era, the proliferation of information technology has led to an unprecedented surge in data generation, with this data being dispersed across a multitude of mobile devices. Facing these situations and the training of deep learning model that needs great computing power support, the distributed algorithm that can carry out multi-party joint modeling has attracted everyone’s attention. The distributed training mode relieves the huge pressure of centralized model on computer computing power and communication. However, most distributed algorithms currently work in a master-slave mode, often including a central server for coordination, which to some extent will cause communication pressure, data leakage, privacy violations and other issues. To solve these problems, a decentralized fully distributed algorithm based on deep random weight neural network is proposed. The algorithm decomposes the original objective function into several sub-problems under consistency constraints, combines the decentralized average consensus (DAC) and alternating direction method of multipliers (ADMM), and achieves the goal of joint modeling and training through local calculation and communication of each node. Finally, we compare the proposed decentralized algorithm with several centralized deep neural networks with random weights, and experimental results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 Distributed Optimization Deep Neural Network random vector Functional-Link (RVFL) Network Alternating Direction Method of Multipliers (ADMM)
在线阅读 下载PDF
基于Vector Random Decrement技术和特征系统实现算法ERA的模态参数识别
4
作者 杨陈 孙阳 《世界地震工程》 CSCD 北大核心 2013年第4期102-107,共6页
现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等... 现代的大型复杂结构,如大坝、高层建筑、桥梁及海洋平台等,处于复杂的环境载荷作用下,这些环境载荷往往是无法测量的。在仅有输出响应时,应用随机减量法RDT获得自由衰减响应信号,而后用时域复指数拟合法、ITD法、特征系统实现算法ERA等算法获得结构的模态参数是一种有效的方法。但在数据量有限时,随机减量函数的平均次数过少,导致RD函数的收敛性较差。为此提出了利用Vector Random Decrement技术(VRDT)提取自由衰减响应信号,而后利用特征系统实现算法ERA求得模态参数的方法,新算法能够有效地提高模态参数识别精度。数值算例验证了所提算法的有效性。 展开更多
关键词 向量随机减量技术 特征系统实现算法 模态分析
在线阅读 下载PDF
Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review 被引量:13
5
作者 Ernest Yeboah Boateng Joseph Otoo Daniel A. Abaye 《Journal of Data Analysis and Information Processing》 2020年第4期341-357,共17页
In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (... In this paper, sixty-eight research articles published between 2000 and 2017 as well as textbooks which employed four classification algorithms: K-Nearest-Neighbor (KNN), Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN) as the main statistical tools were reviewed. The aim was to examine and compare these nonparametric classification methods on the following attributes: robustness to training data, sensitivity to changes, data fitting, stability, ability to handle large data sizes, sensitivity to noise, time invested in parameter tuning, and accuracy. The performances, strengths and shortcomings of each of the algorithms were examined, and finally, a conclusion was arrived at on which one has higher performance. It was evident from the literature reviewed that RF is too sensitive to small changes in the training dataset and is occasionally unstable and tends to overfit in the model. KNN is easy to implement and understand but has a major drawback of becoming significantly slow as the size of the data in use grows, while the ideal value of K for the KNN classifier is difficult to set. SVM and RF are insensitive to noise or overtraining, which shows their ability in dealing with unbalanced data. Larger input datasets will lengthen classification times for NN and KNN more than for SVM and RF. Among these nonparametric classification methods, NN has the potential to become a more widely used classification algorithm, but because of their time-consuming parameter tuning procedure, high level of complexity in computational processing, the numerous types of NN architectures to choose from and the high number of algorithms used for training, most researchers recommend SVM and RF as easier and wieldy used methods which repeatedly achieve results with high accuracies and are often faster to implement. 展开更多
关键词 Classification Algorithms NON-PARAMETRIC K-Nearest-Neighbor Neural Networks random Forest Support vector Machines
在线阅读 下载PDF
Multivariable Dynamic Modeling for Molten Iron Quality Using Incremental Random Vector Functional-link Networks 被引量:4
6
作者 Li ZHANG Ping ZHOU +2 位作者 He-da SONG Meng YUAN Tian-you CHAI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第11期1151-1159,共9页
Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking p... Molten iron temperature as well as Si, P, and S contents is the most essential molten iron quality (MIQ) indices in the blast furnace (BF) ironmaking, which requires strict monitoring during the whole ironmaking production. However, these MIQ parameters are difficult to be directly measured online, and large-time delay exists in off-line analysis through laboratory sampling. Focusing on the practical challenge, a data-driven modeling method was presented for the prediction of MIQ using the improved muhivariable incremental random vector functional-link net- works (M-I-RVFLNs). Compared with the conventional random vector functional-link networks (RVFLNs) and the online sequential RVFLNs, the M-I-RVFLNs have solved the problem of deciding the optimal number of hidden nodes and overcome the overfitting problems. Moreover, the proposed M I RVFLNs model has exhibited the potential for multivariable prediction of the MIQ and improved the terminal condition for the multiple-input multiple-out- put (MIMO) dynamic system, which is suitable for the BF ironmaking process in practice. Ultimately, industrial experiments and contrastive researches have been conducted on the BF No. 2 in Liuzhou Iron and Steel Group Co. Ltd. of China using the proposed method, and the results demonstrate that the established model produces better estima ting accuracy than other MIQ modeling methods. 展开更多
关键词 molten iron quality multivariable incremental random vector functional-link network blast furnace iron-making data-driven modeling principal component analysis
原文传递
Dispersion of the Mechanical Parts Performance Indicators Based on the Concept of Random Vector 被引量:1
7
作者 XIA Changgao ZHU Pei +2 位作者 ZHANG Meng GAO Xiang LU Liling 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第1期153-159,共7页
To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to th... To solve the precision and reliability problem of various machinery equipments and military vehicles, some military organisations, the industrial sector and the academia at home and abroad begin to pay attention to the statistical distribution of machining dimensions, material properties and service loads, and the system reliability optimization design with constraints and reliability optimization design of various mechanical parts is studied in this way. However, the above researches focus on solving the strength and the life problem, and no studies have been done on the discrete degree and discrete pattern of other performance indicators. The concept of using a random vector to describe the mechanical parts performance indicators is presented; characteristics between the value of the vector variance matrix determinant and the sum of the diagonal covariance matrix in describing the performance indicators of vector dispersion are studied and compared. A clutch diaphragm spring is set as an example, the geometric dimension indicator is described with random vector, and the applicability of using variance matrix determinant and variance matrix trace of geometric dimension vector to describe discrete degree of random vector is studied by using Monte-Carlo simulation method and component discrete degree perturbation method. Also, the effects of different components of diaphragm spring geometric dimension vector on the value of covariance matrix determinant and the sum of covariance matrix diagonal of diaphragm spring performance indicators vector are analyzed. The present study shows that the impacts of the dispersion of diaphragm spring cone angle on every performance dispersion are all ranked first, and far exceed that of other dimension dispersion. So it must be strictly controlled in the production process. The result of the research work provides a reference for the design of diaphragm spring, and also it presents a proper method for researching the performance of other mechanical parts. 展开更多
关键词 diaphragm spring random vector DISPERSION
在线阅读 下载PDF
An Approximate Linear Solver in Least Square Support Vector Machine Using Randomized Singular Value Decomposition
8
作者 LIU Bing XIANG Hua 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2015年第4期283-290,共8页
In this paper, we investigate the linear solver in least square support vector machine(LSSVM) for large-scale data regression. The traditional methods using the direct solvers are costly. We know that the linear equ... In this paper, we investigate the linear solver in least square support vector machine(LSSVM) for large-scale data regression. The traditional methods using the direct solvers are costly. We know that the linear equations should be solved repeatedly for choosing appropriate parameters in LSSVM, so the key for speeding up LSSVM is to improve the method of solving the linear equations. We approximate large-scale kernel matrices and get the approximate solution of linear equations by using randomized singular value decomposition(randomized SVD). Some data sets coming from University of California Irvine machine learning repository are used to perform the experiments. We find LSSVM based on randomized SVD is more accurate and less time-consuming in the case of large number of variables than the method based on Nystrom method or Lanczos process. 展开更多
关键词 least square support vector machine Nystr?m method Lanczos process randomized singular value decomposition
原文传递
The Estimation of Radial Exponential Random Vectors in Additive White Gaussian Noise
9
作者 Pichid KITTISUWAN Sanparith MARUKATAT Widhyakorn ASDORNWISED 《Wireless Sensor Network》 2009年第4期284-292,共9页
Image signals are always disturbed by noise during their transmission, such as in mobile or network communication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an in... Image signals are always disturbed by noise during their transmission, such as in mobile or network communication. The received image quality is significantly influenced by noise. Thus, image signal denoising is an indispensable step during image processing. As we all know, most commonly used methods of image denoising is Bayesian wavelet transform estimators. The Performance of various estimators, such as maximum a posteriori (MAP), or minimum mean square error (MMSE) is strongly dependent on correctness of the proposed model for original data distribution. Therefore, the selection of a proper model for distribution of wavelet coefficients is important in wavelet-based image denoising. This paper presents a new image denoising algorithm based on the modeling of wavelet coefficients in each subband with multivariate Radial Exponential probability density function (PDF) with local variances. Generally these multivariate extensions do not result in a closed form expression, and the solution requires numerical solutions. However, we drive a closed form MMSE shrinkage functions for a Radial Exponential random vectors in additive white Gaussian noise (AWGN). The estimator is motivated and tested on the problem of wavelet-based image denoising. In the last, proposed, the same idea is applied to the dual-tree complex wavelet transform (DT-CWT), This Transform is an over-complete wavelet transform. 展开更多
关键词 MMSE ESTIMATOR RADIAL EXPONENTIAL random vectorS Wavelet Transform Image DENOISING
在线阅读 下载PDF
The Comparison between Random Forest and Support Vector Machine Algorithm for Predicting β-Hairpin Motifs in Proteins
10
作者 Shaochun Jia Xiuzhen Hu Lixia Sun 《Engineering(科研)》 2013年第10期391-395,共5页
Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 ... Based on the research of predictingβ-hairpin motifs in proteins, we apply Random Forest and Support Vector Machine algorithm to predictβ-hairpin motifs in ArchDB40 dataset. The motifs with the loop length of 2 to 8 amino acid residues are extracted as research object and thefixed-length pattern of 12 amino acids are selected. When using the same characteristic parameters and the same test method, Random Forest algorithm is more effective than Support Vector Machine. In addition, because of Random Forest algorithm doesn’t produce overfitting phenomenon while the dimension of characteristic parameters is higher, we use Random Forest based on higher dimension characteristic parameters to predictβ-hairpin motifs. The better prediction results are obtained;the overall accuracy and Matthew’s correlation coefficient of 5-fold cross-validation achieve 83.3% and 0.59, respectively. 展开更多
关键词 random FOREST ALGORITHM Support vector Machine ALGORITHM β-Hairpin MOTIF INCREMENT of Diversity SCORING Function Predicted Secondary Structure Information
暂未订购
Efficient Global Threshold Vector Outlyingness Ratio Filter for the Removal of Random Valued Impulse Noise
11
作者 J. Amudha R. Sudhakar 《Circuits and Systems》 2016年第6期692-700,共9页
This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with ... This research paper proposes a filter to remove Random Valued Impulse Noise (RVIN) based on Global Threshold Vector Outlyingness Ratio (GTVOR) that is applicable for real time image processing. This filter works with the algorithm that breaks the images into various decomposition levels using Discrete Wavelet Transform (DWT) and searches for the noisy pixels using the outlyingness of the pixel. This algorithm has the capability of differentiating high frequency pixels and the “noisy pixel” using the threshold as well as window adjustments. The damage and the loss of information are prevented by means of interior mining. This global threshold based algorithm uses different thresholds for different quadrants of DWT and thus helps in recovery of noisy image even if it is 90% affected. Experimental results exhibit that this method outperforms other existing methods for accurate noise detection and removal, at the same time chain of connectivity is not lost. 展开更多
关键词 Image Restoration Noise Detection Noise Removal random Valued Impulse Noise Global Threshold vector Outlyingness Ratio
在线阅读 下载PDF
Computational Intensity Prediction Model of Vector Data Overlay with Random Forest Method
12
作者 Qian Wang Han Cao Yan-Hui Guo 《国际计算机前沿大会会议论文集》 2017年第1期147-149,共3页
Spatial analysis is the core of geographic information system(GIS),of which,spatial overlay of vector data is a major job.Computational intensity of the spatial overlay has a direct effect on the overall performance o... Spatial analysis is the core of geographic information system(GIS),of which,spatial overlay of vector data is a major job.Computational intensity of the spatial overlay has a direct effect on the overall performance of the GIS.High precision modeling for the computational intensity and analysis of the vector data overlay has been a challenging task.Thus,the paper proposes a novel approach,which utilizes self-learning and self-training features of optimized random forest algorithm to the vector data overlay analysis.Simulation experiments show that the proposed model is superior to non-optimized random forest algorithm and support vector machine model with higher prediction precision and is also capable of eliminate redundant computational intensity features. 展开更多
关键词 random FOREST Space analysis vector data COMPUTATIONAL INTENSITY Machine learning
在线阅读 下载PDF
基于机器学习的30%TBP/煤油-硝酸体系中主要组分的分配比预测研究 被引量:1
13
作者 于婷 张音音 +6 位作者 张睿志 金文蕾 罗应婷 朱升峰 何辉 叶国安 龚禾林 《原子能科学技术》 北大核心 2025年第1期14-23,共10页
为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型... 为最优化后处理过程的实验条件、优化工艺、降低实验成本和时间,并提高后处理流程数学模拟的准确性,本文基于随机森林、支持向量回归和K近邻这3种经典的机器学习算法建立了30%TBP/煤油-硝酸体系中主要组分铀、钚、硝酸的分配比数学模型,并基于不同数据集进行了超参数优化和模型训练。通过对模型进行验证和测试,发现采用随机森林算法建立的分配比模型准确度最高,其对铀预测的平均绝对相对误差达7.73%,较传统方法提高了约7%。与传统建模方法相比,机器学习方法建立模型的准确度更高。 展开更多
关键词 分配比数学模型 随机森林 支持向量回归 K近邻
在线阅读 下载PDF
深埋长大隧道地温预测的机器学习算法对比研究 被引量:1
14
作者 周权 罗锋 +1 位作者 柴波 周爱国 《安全与环境工程》 北大核心 2025年第1期137-147,共11页
地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机... 地热对隧道施工、工程结构及运营安全等均有较大的危害,随着我国基础设施建设布局西移,隧道建设的地质条件愈发复杂,隧道埋深和长度不断增加,隧道施工期高温热害问题频发。针对传统地温预测方法中预测精度不高、数据运用不充分,单一机器学习模型解译性差等问题,以A隧道为研究对象,将决策树(decision tree,DT)、支持向量机(support vector machine,SVM)、随机森林(random forest,RF)进行耦合,提出了基于DT-SVM-RF模型的深埋长大隧道地温预测方法。在分析隧道综合测井、地应力及岩石热物理试验、航空物探数据后,选取深度、声波波速等10个影响因子作为模型的输入,采用随机交叉验证和空间交叉验证对模型的鲁棒性、泛化能力进行检验,构建LASSO回归、随机森林、互信息3种回归模型,分析10个影响因子的特征重要性排序。结果表明:在测试集上多元线性回归、支持向量机、人工神经网络和决策树-支持向量机-随机森林(decision tree-support vector machinerandom forest,DT-SVM-RF)模型决定系数(R^(2))分别为0.76、0.91、0.88、0.93,均方误差MSE分别为17.64、6.25、8.46、5.20,DT-SVM-RF模型具有相对更优的预测性能,深度、岩石导温系数、岩石导热系数、最大水平主应力特征较为重要,说明DT-SVM-RF模型能有效地提高地温预测的准确率。研究结果可为类似隧道地温预测提供一种精度更高的可行新思路。 展开更多
关键词 隧道热害 隧道安全 多元线性回归 支持向量机(SVM) 随机森林(RF) 人工神经网络(ANN) 特征选择
在线阅读 下载PDF
新能源汽车动力电池管理的核心与关键技术研究 被引量:1
15
作者 郑希江 路艳玲 +1 位作者 吕元锋 李淑廷 《专用汽车》 2025年第5期87-90,共4页
随着新能源汽车的快速发展,动力电池作为核心部件,已成为电动汽车性能和安全的关键。传统的电池管理系统(BMS)在监测、充放电控制、热管理和故障诊断方面存在许多不足。这些缺陷不仅影响电池的使用寿命和安全性,也限制了电动汽车的市场... 随着新能源汽车的快速发展,动力电池作为核心部件,已成为电动汽车性能和安全的关键。传统的电池管理系统(BMS)在监测、充放电控制、热管理和故障诊断方面存在许多不足。这些缺陷不仅影响电池的使用寿命和安全性,也限制了电动汽车的市场竞争力。为此,研究了一种基于先进监测技术和智能算法的电池管理框架。该框架集成了用于实时状态监测的高精度传感器,并利用人工神经网络(ANN)开发智能充放电策略,以提高充电效率和电池使用寿命。通过实验和仿真分析,验证了所提出框架的有效性。 展开更多
关键词 电池管理系统 新能源汽车 支持向量机 随机森林 人工神经网络
在线阅读 下载PDF
基于岩石地球化学数据和机器学习的安徽铜(金)矿成矿岩体判别
16
作者 刘建敏 张玉玲 +2 位作者 陈义华 王飞翔 闫峻 《大地构造与成矿学》 北大核心 2025年第5期1217-1230,共14页
数据驱动的岩体成矿属性分析具有独特优势,能够为成矿潜力评价提供理论支持,为矿床勘查提供新的方向。安徽省作为铜(金)矿产的重要产区,其铜(金)矿的形成与区内晚中生代岩浆岩密切相关。本文收集了1155条公开发表的全岩地球化学数据,基... 数据驱动的岩体成矿属性分析具有独特优势,能够为成矿潜力评价提供理论支持,为矿床勘查提供新的方向。安徽省作为铜(金)矿产的重要产区,其铜(金)矿的形成与区内晚中生代岩浆岩密切相关。本文收集了1155条公开发表的全岩地球化学数据,基于这些数据构建了数据变量,并进一步通过支持向量机(SVM)、随机森林(RF)和前馈神经网络(FNN)三种机器学习模型,对成铜(金)矿和不成铜(金)矿岩体进行判别。通过模型的准确率提取了铜(金)矿的特征变量,发现大多特征变量与Sr、Rb、Th等元素及它们的比值有关。具体表现为,相对于铜(金)不成矿岩体,铜(金)成矿岩体具有Rb含量低、Sr含量高、Rb/Sr值低、Sr/Th和Sr/Yb值高的特点。利用机器学习模型对马厂、上腰铺、瓦屋刘、牌楼、周冲、茂林和仙霞这些晚中生代未知成矿属性的岩体进行了成矿潜力评价。结果显示马厂和上腰铺岩体成铜(金)矿潜力较高,而茂林、仙霞和牌楼岩体成铜(金)矿潜力较低,瓦屋刘和周冲岩体具有一定的成矿潜力。本次研究表明基于地球化学数据和机器学习建立的模型能够有效提取目标矿床的特征变量,并为成矿岩体的判别提供科学依据,为后续矿床勘探提供决策支持。相关机器学习代码已公开在GitHub上,链接地址为:https://github.com/liujmhf/geochemistry。 展开更多
关键词 机器学习 随机森林 支持向量机 前馈神经网络 地球化学数据 成矿潜力
在线阅读 下载PDF
基于机器学习算法的湖南沅陵森林火灾风险预测
17
作者 楚春晖 朱柯颖 +3 位作者 王光军 贺蔚成 覃思敏 莫梓 《中南林业科技大学学报》 北大核心 2025年第10期59-68,共10页
【目的】为准确评估森林火灾风险等级,助力森林巡护、优化应急资源布局、提升防火效能,以沅陵县为研究对象,基于地形、可燃物、气象和人类活动等因素数据,采用机器学习算法构建森林火灾发生预测模型,为森林火灾预防提供科学依据。【方... 【目的】为准确评估森林火灾风险等级,助力森林巡护、优化应急资源布局、提升防火效能,以沅陵县为研究对象,基于地形、可燃物、气象和人类活动等因素数据,采用机器学习算法构建森林火灾发生预测模型,为森林火灾预防提供科学依据。【方法】综合考虑地形、可燃物、气象和人为活动4类因素,在研究区内提取11个驱动因子,包括高程、坡度、坡向、归一化植被指数、植被类型、降水量、气温、风速、距道路的距离、距居民点的距离和距水系的距离,对影响森林火灾发生的驱动因子进行评估。基于MODIS火灾产品得出研究区域内的历史火点数据,通过机器学习算法构建森林火灾风险预测模型,并采用混淆矩阵评估指标及ROC曲线对模型的预测精度进行综合评价。【结果】距道路的距离和距居民点的距离这2个驱动因素占据的权重相对最大,其他驱动因素也影响着森林火灾的发生。3种模型的ROC曲线表明,随机森林模型具有较好的准确性,准确率达到78.15%,曲线下面积值为0.85,逻辑斯蒂回归预测模型准确度为74.81%,曲线下面积值为0.81;支持向量机预测模型准确度为70.74%,曲线下面积值为0.79。【结论】随机森林模型表现出比逻辑斯蒂回归模型和支持向量机模型更好的预测能力。森林火灾高、极高风险区域在研究区中占比26.62%。森林火灾风险等级图有助于有关部门采取相关预防措施,有效保障森林资源安全。 展开更多
关键词 机器学习 随机森林 支持向量机 火灾风险 预测模型 驱动因子
在线阅读 下载PDF
融合随机森林和支持向量机的肺癌免疫检查点阻断治疗响应预测
18
作者 穆晓霞 苗玉琪 +2 位作者 王一洁 郭启航 李钧涛 《东北师大学报(自然科学版)》 北大核心 2025年第2期73-81,共9页
为了探索特征之间的相互作用,提高对免疫检查点阻断治疗响应的预测精度,构建了一种融合随机森林与支持向量机的预测模型(RFSVM).首先,使用随机森林(RF)算法评估各特征的重要性,并通过递归特征消除方法筛选出一个新的特征集,该特征集不... 为了探索特征之间的相互作用,提高对免疫检查点阻断治疗响应的预测精度,构建了一种融合随机森林与支持向量机的预测模型(RFSVM).首先,使用随机森林(RF)算法评估各特征的重要性,并通过递归特征消除方法筛选出一个新的特征集,该特征集不仅包括原始特征,还包含其二阶非线性组合;其次,在该特征集上构建支持向量机(SVM)模型,并通过比较实验确定最适合的核函数.实验结果表明,与4种常见的机器学习算法相比,所提出的RFSVM模型在非小细胞肺癌数据集上表现优异.此外,通过Kaplan-Meier生存分析验证了所选特征在生物学上的显著意义. 展开更多
关键词 非小细胞肺癌 免疫检查点阻断 支持向量机 随机森林
在线阅读 下载PDF
MRI影像组学结合临床特征的机器学习模型对结直肠癌肝转移的预测价值
19
作者 李波 刘冠男 《中国普通外科杂志》 北大核心 2025年第7期1410-1420,共11页
背景与目的:结直肠癌肝转移(CRCLM)是影响患者预后的主要原因,术前无创、精准诊断对制定治疗方案至关重要。传统临床标志物特异性有限,本研究旨在基于多模态MRI影像组学特征,结合机器学习算法,构建预测CRCLM的高效模型,并评价其临床价... 背景与目的:结直肠癌肝转移(CRCLM)是影响患者预后的主要原因,术前无创、精准诊断对制定治疗方案至关重要。传统临床标志物特异性有限,本研究旨在基于多模态MRI影像组学特征,结合机器学习算法,构建预测CRCLM的高效模型,并评价其临床价值。方法:收集2022年5月—2024年5月于河南省南阳市第一人民医院行术前MRI检查并经病理证实的150例结直肠癌患者,随机分为训练集(n=120)和验证集(n=30)。其中CRCLM 57例,无CRCLM 93例。采用单因素与多因素分析筛选CRCLM独立危险因素,建立临床诊断模型。提取多模态MRI影像组学特征,经LASSO筛选后分别构建Logistic回归(LR)、支持向量机(SVM)、随机森林(RF)模型,并比较其诊断效能。建立临床及影像组学联合诊断模型,并通过受试者操作特征和决策曲线(DCA)评估效能与临床获益。结果:癌胚抗原(OR=1.323,95%CI=1.079~1.567)、糖类抗原19-9(OR=2.512,95%CI=1.225~3.799)及中性粒细胞/淋巴细胞比值(OR=1.881,95%CI=1.354~2.409)是CRCLM独立危险因素(均P<0.05),以上3个因素构建的临床诊断模型曲线下面积(AUC)为0.793。RF模型在训练集与验证集AUC最高(0.770、0.763),优于LR和SVM。基于RF的联合诊断模型在训练集与验证集AUC分别为0.913和0.947,明显优于单独临床或影像组学诊断模型,DCA显示联合诊断模型具有最高临床净获益。结论:RF模型在影像组学预测中表现最佳,其与临床特征结合的联合模型能显著提高CRCLM的无创诊断效能,具备较高的临床应用价值。 展开更多
关键词 结直肠肿瘤 肿瘤转移 多模态磁共振成像 影像组学 支持向量机 随机森林
原文传递
花山谜窟—渐江风景名胜区乔木林森林蓄积量估测
20
作者 唐雪海 钱子悦 +5 位作者 王佩 黄庆丰 左纬杰 倪辰 孔令媛 许程 《安徽农业科学》 2025年第14期121-125,170,共6页
以花山谜窟—渐江风景名胜区作为研究对象,结合Landsat遥感影像和DEM数据,综合考虑光谱、纹理、地形特征,分别使用多元线性逐步回归(MLSR)、支持向量机(SVM)、随机森林(RF)构建乔木林遥感蓄积量估算模型,并选择最优模型反演研究区乔木... 以花山谜窟—渐江风景名胜区作为研究对象,结合Landsat遥感影像和DEM数据,综合考虑光谱、纹理、地形特征,分别使用多元线性逐步回归(MLSR)、支持向量机(SVM)、随机森林(RF)构建乔木林遥感蓄积量估算模型,并选择最优模型反演研究区乔木蓄积。结果表明:对比3种模型估测结果的精度评价指标R^(2)和RMSE,MLSR的R^(2)=0.46,RMSE=113.14 m^(3)/hm^(2);SVM的R^(2)=0.57,RMSE=98.36 m^(3)/hm^(2);FM的R^(2)=0.65,RMSE=91.01 m^(3)/hm^(2);最终以RF模型为最优模型反演研究区蓄积量,得出乔木总蓄积量688 516.275 m^(3),平均蓄积量245.467 m^(3)/hm^(2)。该研究结果可为风景名胜区森林生态服务功能价值评估提供数据支撑。 展开更多
关键词 森林蓄积量 遥感反演 随机森林 支持向量机 多元线性逐步回归
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部