Compared with accurate diagnosis, the system’s selfdiagnosing capability can be greatly increased through the t/kdiagnosis strategy at most k vertexes to be mistakenly identified as faulty under the comparison model,...Compared with accurate diagnosis, the system’s selfdiagnosing capability can be greatly increased through the t/kdiagnosis strategy at most k vertexes to be mistakenly identified as faulty under the comparison model, where k is typically a small number. Based on the Preparata, Metze, and Chien(PMC)model, the n-dimensional hypercube network is proved to be t/kdiagnosable. In this paper, based on the Maeng and Malek(MM)*model, a novel t/k-fault diagnosis(1≤k≤4) algorithm of ndimensional hypercube, called t/k-MM*-DIAG, is proposed to isolate all faulty processors within the set of nodes, among which the number of fault-free nodes identified wrongly as faulty is at most k. The time complexity in our algorithm is only O(2~n n~2).展开更多
For uncertainty quantification of complex models with high-dimensional,nonlinear,multi-component coupling like digital twins,traditional statistical sampling methods,such as random sampling and Latin hypercube samplin...For uncertainty quantification of complex models with high-dimensional,nonlinear,multi-component coupling like digital twins,traditional statistical sampling methods,such as random sampling and Latin hypercube sampling,require a large number of samples,which entails huge computational costs.Therefore,how to construct a small-size sample space has been a hot issue of interest for researchers.To this end,this paper proposes a sequential search-based Latin hypercube sampling scheme to generate efficient and accurate samples for uncertainty quantification.First,the sampling range of the samples is formed by carving the polymorphic uncertainty based on theoretical analysis.Then,the optimal Latin hypercube design is selected using the Latin hypercube sampling method combined with the"space filling"criterion.Finally,the sample selection function is established,and the next most informative sample is optimally selected to obtain the sequential test sample.Compared with the classical sampling method,the generated samples can retain more information on the basis of sparsity.A series of numerical experiments are conducted to demonstrate the superiority of the proposed sequential search-based Latin hypercube sampling scheme,which is a way to provide reliable uncertainty quantification results with small sample sizes.展开更多
The exchanged hypercube EH(s, t) (where s ≥ 1 and t ≥ 1) is obtained by systematically reducing links from a regular hypercube Q,+t+l. One-step diagnosis of exchanged hypercubes which involves only one testi...The exchanged hypercube EH(s, t) (where s ≥ 1 and t ≥ 1) is obtained by systematically reducing links from a regular hypercube Q,+t+l. One-step diagnosis of exchanged hypercubes which involves only one testing phase during which processors test each other is discussed. The diagnosabilities of exchanged hypercubes are studied by using the pessimistic one-step diagno- sis strategy under two kinds of diagnosis models: the PMC model and the MM model. The main results presented here are the two proofs that the degree of diagnosability of the EH(s, t) under pessimistic one-step tl/tl fault diagnosis strategy is 2s where I ≤ s ≤ t (respectively, 2t, where 1 ≤ t ≤ s) based on the PMC model and that it is also 2s where 1 ≤ s ≤ t (respectively, 2t, where 1 ≤ t ≤ s) based on the MM* model.展开更多
Let Qn,k (n 〉 3, 1 〈 k ≤ n - 1) be an n-dimensional enhanced hypercube which is an attractive variant of the hypercube and can be obtained by adding some complementary edges, fv and fe be the numbers of faulty ve...Let Qn,k (n 〉 3, 1 〈 k ≤ n - 1) be an n-dimensional enhanced hypercube which is an attractive variant of the hypercube and can be obtained by adding some complementary edges, fv and fe be the numbers of faulty vertices and faulty edges, respectively. In this paper, we give three main results. First, a fault-free path P[u, v] of length at least 2n - 2fv - 1 (respectively, 2n - 2fv - 2) can be embedded on Qn,k with fv + f≤ n- 1 when dQn,k (u, v) is odd (respectively, dQ,~,k (u, v) is even). Secondly, an Q,,k is (n - 2) edgefault-free hyper Hamiltonianaceable when n ( 3) and k have the same parity. Lastly, a fault-free cycle of length at least 2n - 2fv can be embedded on Qn,k with f~ 〈 n - 1 and fv+f≤2n-4.展开更多
Given a graph G and a non-negative integer h, the h-restricted connectivity κh(G) of G is the minimum cardinality of a set of vertices of G, in which at least h neighbors of any vertex is not included, if any, whos...Given a graph G and a non-negative integer h, the h-restricted connectivity κh(G) of G is the minimum cardinality of a set of vertices of G, in which at least h neighbors of any vertex is not included, if any, whose deletion disconnects G and every remaining component has the minimum degree of vertex at least h; and the h-extra connectivity κh(G) of G is the minimum cardinality of a set of vertices of G, if any, whose deletion disconnects G and every remaining component has order more than h. This paper shows that for the hypercube Qn and the folded hypercube FQn, κ1(Qn)=κ(1)(Qn)=2n-2 for n≥3, κ2(Qn)=3n-5 for n≥4, κ1(FQn)=κ(1)(FQn)=2n for n≥4 and κ(2)(FQn)=4n-4 for n≥8.展开更多
The generalized conditional fault-tolerant embedding is investigated, in which the n-dimensional folded hypercube networks (denoted by FQn) acts as the host graph, and the longest fault-free cycle represents the gue...The generalized conditional fault-tolerant embedding is investigated, in which the n-dimensional folded hypercube networks (denoted by FQn) acts as the host graph, and the longest fault-free cycle represents the vip graph. Under the conditions looser than that of previous works, it is shown that FQn has a cycle with length at least 2n -21F, I when the number of faulty vertices and non-critical edges is at most 2n-4; where |Fv| is the number of faulty vertices. It provides further theoretical evidence for the fact that FQn has excellent node-fault-tolerance and edge-fault-tolerance when used as a topology of large scale computer networks.展开更多
In this paper, it is proved that the commutator Hβ,b which is generated by the n-dimensional fractional Hardy operator Hβ and b ∈λα (R^n) is bounded from L^p(R^n) to L^q(R^n), where 0 〈 α 〈 1, 1 〈 p, q ...In this paper, it is proved that the commutator Hβ,b which is generated by the n-dimensional fractional Hardy operator Hβ and b ∈λα (R^n) is bounded from L^p(R^n) to L^q(R^n), where 0 〈 α 〈 1, 1 〈 p, q 〈 ∞ and 1/P - 1/q = (α+β)/n. Furthermore, the boundedness of Hβ,b on the homogenous Herz space Kq^α,p(R^n) is obtained.展开更多
In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with fau...In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.展开更多
Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collabora...Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.展开更多
The classical hypercube structure is a popular topological architecture in parallel computing environments and a large number of variations based on the hypercube were posed in the past three decades. Reliability eval...The classical hypercube structure is a popular topological architecture in parallel computing environments and a large number of variations based on the hypercube were posed in the past three decades. Reliability evaluation of systems is important to the design and maintenance of multiprocessor systems. The h-extra edge-connectivity of graph G(V, E) is a kind of measure for the reliability of interconnection systems, which is defined as the minimum cardinality of a subset of edge set, if any, whose deletion disconnects G and such that every re- maining component has at least h vertices. This paper shows that the h-extra edge-connectivity 2n-1 2n-1 of the hypercube Qn is a constant 2n-1 for 2n-1/3≤ h2n-1, and n ≥ 4, which extends the result of [Bounding the size of the subgraph induced by m vertices and extra edge-connectivity of hypercubes, Discrete Applied Mathematics, 2013, 161(16): 2753-2757].展开更多
P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-tr...P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-transitive, and that any multiply-twistedhypercube with three or larger dimensions is not edge-transitive.展开更多
Dynamic fault tree analysis is widely used for the reliability analysis of the complex system with dynamic failure characteristics. In many circumstances, the exact value of system reliability is difficult to obtain d...Dynamic fault tree analysis is widely used for the reliability analysis of the complex system with dynamic failure characteristics. In many circumstances, the exact value of system reliability is difficult to obtain due to absent or insufficient data for failure probabilities or failure rates of components. The traditional fuzzy operation arithmetic based on extension principle or interval theory may lead to fuzzy accumulations. Moreover, the existing fuzzy dynamic fault tree analysis methods are restricted to the case that all system components follow exponential time-to-failure distributions. To overcome these problems, a new fuzzy dynamic fault tree analysis approach based on the weakest n-dimensional t-norm arithmetic and developed sequential binary decision diagrams method is proposed to evaluate system fuzzy reliability. Compared with the existing approach,the proposed method can effectively reduce fuzzy cumulative and be applicable to any time-tofailure distribution type for system components. Finally, a case study is presented to illustrate the application and advantages of the proposed approach.展开更多
Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The comp...Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The complete energy spectra of the consigned system is obtained by computing and adding energy eigenvalues for ground state, for large " r" and for small " r". From this analysis, the mass spectra of heavy quarkonia is derived in three dimensions. Our analytical and numerical results are in good correspondence with other experimental and theoretical studies.展开更多
In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix eleme...In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix elements are also derived.展开更多
基金supported by the National Natural Science Foundation of China(61363002)
文摘Compared with accurate diagnosis, the system’s selfdiagnosing capability can be greatly increased through the t/kdiagnosis strategy at most k vertexes to be mistakenly identified as faulty under the comparison model, where k is typically a small number. Based on the Preparata, Metze, and Chien(PMC)model, the n-dimensional hypercube network is proved to be t/kdiagnosable. In this paper, based on the Maeng and Malek(MM)*model, a novel t/k-fault diagnosis(1≤k≤4) algorithm of ndimensional hypercube, called t/k-MM*-DIAG, is proposed to isolate all faulty processors within the set of nodes, among which the number of fault-free nodes identified wrongly as faulty is at most k. The time complexity in our algorithm is only O(2~n n~2).
基金co-supported by the National Natural Science Foundation of China(Nos.51875014,U2233212 and 51875015)the Natural Science Foundation of Beijing Municipality,China(No.L221008)+1 种基金Science,Technology Innovation 2025 Major Project of Ningbo of China(No.2022Z005)the Tianmushan Laboratory Project,China(No.TK2023-B-001)。
文摘For uncertainty quantification of complex models with high-dimensional,nonlinear,multi-component coupling like digital twins,traditional statistical sampling methods,such as random sampling and Latin hypercube sampling,require a large number of samples,which entails huge computational costs.Therefore,how to construct a small-size sample space has been a hot issue of interest for researchers.To this end,this paper proposes a sequential search-based Latin hypercube sampling scheme to generate efficient and accurate samples for uncertainty quantification.First,the sampling range of the samples is formed by carving the polymorphic uncertainty based on theoretical analysis.Then,the optimal Latin hypercube design is selected using the Latin hypercube sampling method combined with the"space filling"criterion.Finally,the sample selection function is established,and the next most informative sample is optimally selected to obtain the sequential test sample.Compared with the classical sampling method,the generated samples can retain more information on the basis of sparsity.A series of numerical experiments are conducted to demonstrate the superiority of the proposed sequential search-based Latin hypercube sampling scheme,which is a way to provide reliable uncertainty quantification results with small sample sizes.
基金Supported by the National Natural Science Foundation of China under Grant No.69933020 (国家自然科学基金) the Natural Science Foundation of Shandong Province of China under Grant No.Y2002G03 (山东省自然科学基金)
基金supported by the National Natural Science Fundation of China(61363002)
文摘The exchanged hypercube EH(s, t) (where s ≥ 1 and t ≥ 1) is obtained by systematically reducing links from a regular hypercube Q,+t+l. One-step diagnosis of exchanged hypercubes which involves only one testing phase during which processors test each other is discussed. The diagnosabilities of exchanged hypercubes are studied by using the pessimistic one-step diagno- sis strategy under two kinds of diagnosis models: the PMC model and the MM model. The main results presented here are the two proofs that the degree of diagnosability of the EH(s, t) under pessimistic one-step tl/tl fault diagnosis strategy is 2s where I ≤ s ≤ t (respectively, 2t, where 1 ≤ t ≤ s) based on the PMC model and that it is also 2s where 1 ≤ s ≤ t (respectively, 2t, where 1 ≤ t ≤ s) based on the MM* model.
基金supported by NSFC (11071096, 11171129)NSF of Hubei Province, China (T201103)
文摘Let Qn,k (n 〉 3, 1 〈 k ≤ n - 1) be an n-dimensional enhanced hypercube which is an attractive variant of the hypercube and can be obtained by adding some complementary edges, fv and fe be the numbers of faulty vertices and faulty edges, respectively. In this paper, we give three main results. First, a fault-free path P[u, v] of length at least 2n - 2fv - 1 (respectively, 2n - 2fv - 2) can be embedded on Qn,k with fv + f≤ n- 1 when dQn,k (u, v) is odd (respectively, dQ,~,k (u, v) is even). Secondly, an Q,,k is (n - 2) edgefault-free hyper Hamiltonianaceable when n ( 3) and k have the same parity. Lastly, a fault-free cycle of length at least 2n - 2fv can be embedded on Qn,k with f~ 〈 n - 1 and fv+f≤2n-4.
文摘Given a graph G and a non-negative integer h, the h-restricted connectivity κh(G) of G is the minimum cardinality of a set of vertices of G, in which at least h neighbors of any vertex is not included, if any, whose deletion disconnects G and every remaining component has the minimum degree of vertex at least h; and the h-extra connectivity κh(G) of G is the minimum cardinality of a set of vertices of G, if any, whose deletion disconnects G and every remaining component has order more than h. This paper shows that for the hypercube Qn and the folded hypercube FQn, κ1(Qn)=κ(1)(Qn)=2n-2 for n≥3, κ2(Qn)=3n-5 for n≥4, κ1(FQn)=κ(1)(FQn)=2n for n≥4 and κ(2)(FQn)=4n-4 for n≥8.
基金Supported by the National Natural Science Foundation of China(11071022)the Key Project of Hubei Department of Education(D20092207)
文摘The generalized conditional fault-tolerant embedding is investigated, in which the n-dimensional folded hypercube networks (denoted by FQn) acts as the host graph, and the longest fault-free cycle represents the vip graph. Under the conditions looser than that of previous works, it is shown that FQn has a cycle with length at least 2n -21F, I when the number of faulty vertices and non-critical edges is at most 2n-4; where |Fv| is the number of faulty vertices. It provides further theoretical evidence for the fact that FQn has excellent node-fault-tolerance and edge-fault-tolerance when used as a topology of large scale computer networks.
基金The NSF (Q2008A01) of Shandong,Chinathe NSF (10871024) of China
文摘In this paper, it is proved that the commutator Hβ,b which is generated by the n-dimensional fractional Hardy operator Hβ and b ∈λα (R^n) is bounded from L^p(R^n) to L^q(R^n), where 0 〈 α 〈 1, 1 〈 p, q 〈 ∞ and 1/P - 1/q = (α+β)/n. Furthermore, the boundedness of Hβ,b on the homogenous Herz space Kq^α,p(R^n) is obtained.
基金supported by NSFC(11071096 and 11171129)Hubei Province,China(T201103)
文摘In this paper, we study the enhanced hypercube, an attractive variant of the hypercube and obtained by adding some complementary edges from a hypercube, and focus on cycles embedding on the enhanced hypercube with faulty vertices. Let Fu be the set of faulty vertices in the n-dimensional enhanced hypercube Qn,k (n ≥ 3, 1 ≤ k 〈≤n - 1). When IFvl = 2, we showed that Qn,k - Fv contains a fault-free cycle of every even length from 4 to 2n - 4 where n (n ≥ 3) and k have the same parity; and contains a fault-free cycle of every even length from 4 to 2n - 4, simultaneously, contains a cycle of every odd length from n-k + 2 to 2^n-3 where n (≥ 3) and k have the different parity. Furthermore, when |Fv| = fv ≤ n - 2, we prove that there exists the longest fault-free cycle, which is of even length 2^n - 2fv whether n (n ≥ 3) and k have the same parity or not; and there exists the longest fault-free cycle, which is of odd length 2^n - 2fv + 1 in Qn,k - Fv where n (≥ 3) and k have the different parity.
文摘Improving the efficiency of ship optimization is crucial for modem ship design. Compared with traditional methods, multidisciplinary design optimization (MDO) is a more promising approach. For this reason, Collaborative Optimization (CO) is discussed and analyzed in this paper. As one of the most frequently applied MDO methods, CO promotes autonomy of disciplines while providing a coordinating mechanism guaranteeing progress toward an optimum and maintaining interdisciplinary compatibility. However, there are some difficulties in applying the conventional CO method, such as difficulties in choosing an initial point and tremendous computational requirements. For the purpose of overcoming these problems, optimal Latin hypercube design and Radial basis function network were applied to CO. Optimal Latin hypercube design is a modified Latin Hypercube design. Radial basis function network approximates the optimization model, and is updated during the optimization process to improve accuracy. It is shown by examples that the computing efficiency and robustness of this CO method are higher than with the conventional CO method.
基金Supported by the National Natural Science Foundation of China(11171283,11471273,11461038,11301440)Natural Sciences Foundation of Shanxi Province(2014021010-2)
文摘The classical hypercube structure is a popular topological architecture in parallel computing environments and a large number of variations based on the hypercube were posed in the past three decades. Reliability evaluation of systems is important to the design and maintenance of multiprocessor systems. The h-extra edge-connectivity of graph G(V, E) is a kind of measure for the reliability of interconnection systems, which is defined as the minimum cardinality of a subset of edge set, if any, whose deletion disconnects G and such that every re- maining component has at least h vertices. This paper shows that the h-extra edge-connectivity 2n-1 2n-1 of the hypercube Qn is a constant 2n-1 for 2n-1/3≤ h2n-1, and n ≥ 4, which extends the result of [Bounding the size of the subgraph induced by m vertices and extra edge-connectivity of hypercubes, Discrete Applied Mathematics, 2013, 161(16): 2753-2757].
基金Supported by ANSF(01046102)Supported by the NNSF of China(10271114)
文摘P Kulasinghe and S Bettayeb showed that any multiply-twisted hypercube withfive or more dimensions is not vertex-transitive. This note shows that any multiply-twistedhypercube with four or less dimensions is vertex-transitive, and that any multiply-twistedhypercube with three or larger dimensions is not edge-transitive.
基金supported by the National Defense Basic Scientific Research program of China (No.61325102)
文摘Dynamic fault tree analysis is widely used for the reliability analysis of the complex system with dynamic failure characteristics. In many circumstances, the exact value of system reliability is difficult to obtain due to absent or insufficient data for failure probabilities or failure rates of components. The traditional fuzzy operation arithmetic based on extension principle or interval theory may lead to fuzzy accumulations. Moreover, the existing fuzzy dynamic fault tree analysis methods are restricted to the case that all system components follow exponential time-to-failure distributions. To overcome these problems, a new fuzzy dynamic fault tree analysis approach based on the weakest n-dimensional t-norm arithmetic and developed sequential binary decision diagrams method is proposed to evaluate system fuzzy reliability. Compared with the existing approach,the proposed method can effectively reduce fuzzy cumulative and be applicable to any time-tofailure distribution type for system components. Finally, a case study is presented to illustrate the application and advantages of the proposed approach.
基金University Grant Commission(UGC) INDIA for providing the financial assistance in terms of UGC-SRF
文摘Here an asymptotic study to the N-dimensional radial Schrdinger equation for the quark-antiquark interaction potential employing asymptotic iteration method via an ansatz to the wavefunction is carried out. The complete energy spectra of the consigned system is obtained by computing and adding energy eigenvalues for ground state, for large " r" and for small " r". From this analysis, the mass spectra of heavy quarkonia is derived in three dimensions. Our analytical and numerical results are in good correspondence with other experimental and theoretical studies.
文摘In this paper, the general calculation formulas of radial matrix elements for relativistic n-dimensional hydrogen atom of spin S=0 are obtained, and the recurrence relation of different power order radial matrix elements are also derived.