We report on the effect of annealing temperature on electrical, interfacial reactions and surface morphological properties of Ni/Cu Schottky contacts on n-type InP. The extracted barrier height of as-deposited Ni/Cu S...We report on the effect of annealing temperature on electrical, interfacial reactions and surface morphological properties of Ni/Cu Schottky contacts on n-type InP. The extracted barrier height of as-deposited Ni/Cu Schottky contact is 0.59 eV (I-V) respectively. The high-quality Schottky contact with barrier height and ideality factor of 0.65 eV (I-V) and 1.15 respectively, can be obtained after annealing at 300℃ for 1 min in a nitrogen atmosphere. However, annealing at 400℃, results the decrease in the barrier height to 0.54 eV (I-V). From the above observations, it is observed that Ni/Cu Schottky contact exhibited excellent electrical properties after annealing at 300℃. Hence, the optimum annealing temperature for the Ni/Cu Schottky contact is 300℃. Furthermore, Cheung’s functions is used to extract the diode parameters including ideality factor, barrier height and series resistance. According to the XRD analysis, the formation of the indium phases at the Ni/Cu/n-InP interface could be the reason for the increase in the barrier height at annealing temperature 300℃. Further, the degradation of the barrier heights after annealing at 400℃ may be due to the formation of phosphide phases at the Ni/Cu/n-InP interface. Scanning electron microscopy (SEM) results show that the overall surface morphology of the Ni/Cu Schottky contact is reasonably smooth.展开更多
We report on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the Pd/Ti/n-InP Schottky barrier diodes (SBDs) in the temperature range 160-400 K in steps of 40 K. The barrier heights and ideal...We report on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the Pd/Ti/n-InP Schottky barrier diodes (SBDs) in the temperature range 160-400 K in steps of 40 K. The barrier heights and ideality factors of Schottky contact are found in the range 0.35 eV (I-V), 0.73 eV (C-V) at 160 K and 0.63 eV (I-V), 0.61 eV (C-V) at 400 K, respectively. It is observed that the zero-bias barrier height decreases and ideality factor n increase with a decrease in temperature, this behaviour is attributed to barrier inhomogeneities by assuming Gaussian distribution at the interface. The calculated value of series resistance (Rs) from the forward I-V characteristics is decreased with an increase in temperature. The homogeneous barrier height value of approximately 0.71 eV for the Pd/Ti Schottky diode has been obtained from the linear relationship between the temperature-dependent experimentally effective barrier heights and ideality factors. The zero-bias barrier height ( ) versus 1/2kT plot has been drawn to obtain evidence of a Gaussian distribution of the barrier heights and values of = 0.80 eV and = 114 mV for the mean barrier height and standard deviation have been obtained from the plot, respectively. The modified Richardson ln(I0/T2)- ( ) versus 1000/T plot has a good linearity over the investigated temperature range and gives the mean barrier height ( ) and Richardson constant (A*) values as 0.796 eV and 6.16 Acm-2K-2 respectively. The discrepancy between Schottky barrier heights obtained from I-V and C-V measurements is also interpreted.展开更多
针对传统模型因缺少对电磁相互作用的表征而导致高频精度不足的问题,以具有优异高频特性的磷化铟高电子迁移率场效应晶体管(indium phosphide high electron mobility field-effect transistor,InP HEMT)为例,提出一种引入寄生耦合效应...针对传统模型因缺少对电磁相互作用的表征而导致高频精度不足的问题,以具有优异高频特性的磷化铟高电子迁移率场效应晶体管(indium phosphide high electron mobility field-effect transistor,InP HEMT)为例,提出一种引入寄生耦合效应的小信号等效电路模型与高频等效噪声电路模型.首先引入栅极–漏极之间的互感元件来模拟器件在高频下由于电磁相互作用产生的寄生耦合效应,并采用电磁仿真与直接参数提取相结合的建模方法,建立小信号等效电路模型.然后以所建小信号模型为基础,通过相关噪声矩阵与噪声参数的提取方法,建立高频等效噪声电路模型.实验结果表明,在500 MHz~50 GHz频段内,S参数最大误差小于3%,四噪声参数相较于传统模型提升约2.45%,并从小信号电流增益(|h21|)、单边功率增益(U)与最小噪声系数(Fmin)出发,评估了寄生耦合效应对高频性能的影响.展开更多
In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate proces...In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate process.We focus on their DC and RF responses,including the maximum transconductance(g_(m_max)),ON-resistance(R_(ON)),current-gain cutoff frequency(f_(T)),and maximum oscillation frequency(f_(max)).The devices have almost same RON.The g_(m_max) improves as the whole small recess moves toward the source.However,a small gate to source capacitance(C_(gs))and a small drain output conductance(g_(ds))lead to the largest f_(T),although the whole small gate recess moves toward the drain leads to the smaller g_(m_max).According to the small-signal modeling,the device with the whole small recess toward drain exhibits an excellent RF characteristics,such as f_(T)=372 GHz and f_(max)=394 GHz.This result is achieved by paying attention to adjust resistive and capacitive parasitics,which play a key role in high-frequency response.展开更多
Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-t...Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-type organic thermoelectric materials and wearable p/n junction thermoelectric devices remains challenging.In this work,two insulated polyamides(PA6 and PA66)that have been widely used as fiber materials are employed as novel dopants for converting p-type single-walled carbon nanotubes(SWCNTs)to n-type thermoelectric materials.Because of the electron transferability of the amide group,polyamide-doped SWCNTs exhibit excellent thermopower values as large as-56.0μV K^(-1) for PA66,and-54.5μV K^(-1) for PA6.Thermoelectric devices with five p/n junctions connected in series are fabricated.The testing device produces a thermoelectric voltage of 43.1 mV and generates 1.85μW thermoelectric power under temperature gradients of approximately 80 K.Furthermore,they display charming capability for temperature recognition and monitoring human activities as sensors.These promising results suggest that the flexible polyamide-doped SWCNT composites herein have high application potential as wearable thermoelectric electronics.展开更多
Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomer...Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomers.More importantly,the 1,6-dibromo regioisomers could only be separated by preparative HPLC.Herein,we report a promising strategy for constructing Janus backbone of BN-doped perylene diimide derivatives.This Janus-type configuration results in the unique regioselective functionalization of BN-JPDIs,which yields exclusively the 1,6-regioisomers.Further investigation shows that the Janus-type configuration leads to a net dipole moment of 1.94 D and intramolecular charge transfer,which causes substantial changes on the optoelectronic properties.Moreover,the single crystal organic field-effect transistors based on BN-JPDIs exhibit electron mobilities up to 0.57 cm^(2)V^(-1)s^(-1),showcasing their potential as versatile building block towards high-performance n-type organic semiconductors.展开更多
磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素....磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素.本文使用蒙特卡罗软件Geant4研究近地轨道的质子与α粒子分别经过150μm二氧化硅和2.54 mm铝层屏蔽后,在500/1000/5000μm InP材料中产生的非电离能量损失(non-ionizing energy loss,NIEL)、平均非电离损伤能随深度分布以及年总非电离损伤能.研究发现:低能质子射程短且较易发生非电离反应,入射粒子能谱中低能粒子占比越大,材料厚度越小,NIEL值越大;计算质子和α粒子年总非电离损伤能,质子的年总非电离损伤能占比达98%,表明质子是近地轨道内产生位移损伤的主要因素;α粒子年总非电离损伤能占比小,但其在InP中的NIEL约为质子的2-10倍,应关注α粒子在InP中产生的单粒子位移损伤效应.本文计算为InP材料在空间辐射环境的应用提供了参考依据.展开更多
文摘We report on the effect of annealing temperature on electrical, interfacial reactions and surface morphological properties of Ni/Cu Schottky contacts on n-type InP. The extracted barrier height of as-deposited Ni/Cu Schottky contact is 0.59 eV (I-V) respectively. The high-quality Schottky contact with barrier height and ideality factor of 0.65 eV (I-V) and 1.15 respectively, can be obtained after annealing at 300℃ for 1 min in a nitrogen atmosphere. However, annealing at 400℃, results the decrease in the barrier height to 0.54 eV (I-V). From the above observations, it is observed that Ni/Cu Schottky contact exhibited excellent electrical properties after annealing at 300℃. Hence, the optimum annealing temperature for the Ni/Cu Schottky contact is 300℃. Furthermore, Cheung’s functions is used to extract the diode parameters including ideality factor, barrier height and series resistance. According to the XRD analysis, the formation of the indium phases at the Ni/Cu/n-InP interface could be the reason for the increase in the barrier height at annealing temperature 300℃. Further, the degradation of the barrier heights after annealing at 400℃ may be due to the formation of phosphide phases at the Ni/Cu/n-InP interface. Scanning electron microscopy (SEM) results show that the overall surface morphology of the Ni/Cu Schottky contact is reasonably smooth.
文摘We report on the current-voltage (I-V) and capacitance-voltage (C-V) characteristics of the Pd/Ti/n-InP Schottky barrier diodes (SBDs) in the temperature range 160-400 K in steps of 40 K. The barrier heights and ideality factors of Schottky contact are found in the range 0.35 eV (I-V), 0.73 eV (C-V) at 160 K and 0.63 eV (I-V), 0.61 eV (C-V) at 400 K, respectively. It is observed that the zero-bias barrier height decreases and ideality factor n increase with a decrease in temperature, this behaviour is attributed to barrier inhomogeneities by assuming Gaussian distribution at the interface. The calculated value of series resistance (Rs) from the forward I-V characteristics is decreased with an increase in temperature. The homogeneous barrier height value of approximately 0.71 eV for the Pd/Ti Schottky diode has been obtained from the linear relationship between the temperature-dependent experimentally effective barrier heights and ideality factors. The zero-bias barrier height ( ) versus 1/2kT plot has been drawn to obtain evidence of a Gaussian distribution of the barrier heights and values of = 0.80 eV and = 114 mV for the mean barrier height and standard deviation have been obtained from the plot, respectively. The modified Richardson ln(I0/T2)- ( ) versus 1000/T plot has a good linearity over the investigated temperature range and gives the mean barrier height ( ) and Richardson constant (A*) values as 0.796 eV and 6.16 Acm-2K-2 respectively. The discrepancy between Schottky barrier heights obtained from I-V and C-V measurements is also interpreted.
文摘针对传统模型因缺少对电磁相互作用的表征而导致高频精度不足的问题,以具有优异高频特性的磷化铟高电子迁移率场效应晶体管(indium phosphide high electron mobility field-effect transistor,InP HEMT)为例,提出一种引入寄生耦合效应的小信号等效电路模型与高频等效噪声电路模型.首先引入栅极–漏极之间的互感元件来模拟器件在高频下由于电磁相互作用产生的寄生耦合效应,并采用电磁仿真与直接参数提取相结合的建模方法,建立小信号等效电路模型.然后以所建小信号模型为基础,通过相关噪声矩阵与噪声参数的提取方法,建立高频等效噪声电路模型.实验结果表明,在500 MHz~50 GHz频段内,S参数最大误差小于3%,四噪声参数相较于传统模型提升约2.45%,并从小信号电流增益(|h21|)、单边功率增益(U)与最小噪声系数(Fmin)出发,评估了寄生耦合效应对高频性能的影响.
基金Supported by the Terahertz Multi User RF Transceiver System Development Project(Z211100004421012).
文摘In this work,we investigate the impact of the whole small recess offset on DC and RF characteristics of InP high electron mobility transistors(HEMTs).L_(g)=80 nm HEMTs are fabricated with a double-recessed gate process.We focus on their DC and RF responses,including the maximum transconductance(g_(m_max)),ON-resistance(R_(ON)),current-gain cutoff frequency(f_(T)),and maximum oscillation frequency(f_(max)).The devices have almost same RON.The g_(m_max) improves as the whole small recess moves toward the source.However,a small gate to source capacitance(C_(gs))and a small drain output conductance(g_(ds))lead to the largest f_(T),although the whole small gate recess moves toward the drain leads to the smaller g_(m_max).According to the small-signal modeling,the device with the whole small recess toward drain exhibits an excellent RF characteristics,such as f_(T)=372 GHz and f_(max)=394 GHz.This result is achieved by paying attention to adjust resistive and capacitive parasitics,which play a key role in high-frequency response.
基金supported by the National Natural Science Foundation of China(Project no.51973120)the Natural Science Foun-dation of Guangdong Province(No.2019A1515010613)+1 种基金the Shenzhen Science and Technology Research Grant(Nos.JCYJ20170818093417096 and JCYJ20180305125649693)the Shenzhen Science and Technology Program(No.20220809111527001).
文摘Due to its ability to convert body heat into electricity,organic thermoelectric material is considered a promising and smart maintenance-free power source to charge wearable electronics.However,developing flexible n-type organic thermoelectric materials and wearable p/n junction thermoelectric devices remains challenging.In this work,two insulated polyamides(PA6 and PA66)that have been widely used as fiber materials are employed as novel dopants for converting p-type single-walled carbon nanotubes(SWCNTs)to n-type thermoelectric materials.Because of the electron transferability of the amide group,polyamide-doped SWCNTs exhibit excellent thermopower values as large as-56.0μV K^(-1) for PA66,and-54.5μV K^(-1) for PA6.Thermoelectric devices with five p/n junctions connected in series are fabricated.The testing device produces a thermoelectric voltage of 43.1 mV and generates 1.85μW thermoelectric power under temperature gradients of approximately 80 K.Furthermore,they display charming capability for temperature recognition and monitoring human activities as sensors.These promising results suggest that the flexible polyamide-doped SWCNT composites herein have high application potential as wearable thermoelectric electronics.
基金support from the National Natural Science Foundation of China(Nos.22071007,22020102001,22335002)the National Key R&D Program of China(No.2022YFB3602802)+3 种基金Beijing Natural Science Foundation(No.Z220025)the National Facility for Protein Science in Shanghai,Shanghai Advanced Research Institute,CAS,for providing technical support in X-ray diffraction data collectionthe High-Performance Computing Platform of Peking University for supporting the computational workthe support of BMS Junior Fellow program。
文摘Regioselevtive functionalization of perylene diimides(PDIs)at bay area often requires multistep synthesis and strenuous recrystallization.Direct bromination of perylene diimides only afford the 1,6 and 1,7-regioisomers.More importantly,the 1,6-dibromo regioisomers could only be separated by preparative HPLC.Herein,we report a promising strategy for constructing Janus backbone of BN-doped perylene diimide derivatives.This Janus-type configuration results in the unique regioselective functionalization of BN-JPDIs,which yields exclusively the 1,6-regioisomers.Further investigation shows that the Janus-type configuration leads to a net dipole moment of 1.94 D and intramolecular charge transfer,which causes substantial changes on the optoelectronic properties.Moreover,the single crystal organic field-effect transistors based on BN-JPDIs exhibit electron mobilities up to 0.57 cm^(2)V^(-1)s^(-1),showcasing their potential as versatile building block towards high-performance n-type organic semiconductors.
基金Supported by the National Natural Science Foundation of China(12027805,62171136,62174166,U2241219)the Science and Technology Commission of Shanghai Municipality(2019SHZDZX01,22JC1402902)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB43010200)。
基金Supported by the National Natural Science Foundation of China(NSFC)(62174166,11991063,U2241219)Shanghai Municipal Science and Technology Major Project(2019SHZDZX01,22JC1402902)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB43010200)。
文摘磷化铟(InP)材料具有禁带宽度大、电子迁移率高、耐高温、抗辐照等优点,是制备航天器电子器件的优良材料.近地轨道内的质子和α粒子对近地卫星威胁巨大,其在InP电子器件中产生的位移损失效应是导致InP电子器件电学性能下降的主要因素.本文使用蒙特卡罗软件Geant4研究近地轨道的质子与α粒子分别经过150μm二氧化硅和2.54 mm铝层屏蔽后,在500/1000/5000μm InP材料中产生的非电离能量损失(non-ionizing energy loss,NIEL)、平均非电离损伤能随深度分布以及年总非电离损伤能.研究发现:低能质子射程短且较易发生非电离反应,入射粒子能谱中低能粒子占比越大,材料厚度越小,NIEL值越大;计算质子和α粒子年总非电离损伤能,质子的年总非电离损伤能占比达98%,表明质子是近地轨道内产生位移损伤的主要因素;α粒子年总非电离损伤能占比小,但其在InP中的NIEL约为质子的2-10倍,应关注α粒子在InP中产生的单粒子位移损伤效应.本文计算为InP材料在空间辐射环境的应用提供了参考依据.