A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and...A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.展开更多
The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecul...The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.展开更多
The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ...The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.展开更多
Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philologica...Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significan...Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.展开更多
Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then...Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).展开更多
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ...Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nano...Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.展开更多
Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analy...Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.展开更多
Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role...Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.展开更多
Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional ...Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.展开更多
The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase preci...The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control.展开更多
A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(da...A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(data-driven prediction).This suggests that the essential dynamics of a complex system can be captured through a low-dimensional representation.Virus evolution and climate change are two examples of complex,time-varying systems.In this article,we show that mutations in the spike protein provide valuable data for predicting SARS-CoV-2 variants,forecasting the possible emergence of the new macro-lineage Q in the near future.Our analysis also demonstrates that carbon dioxide concentration is a reliable indicator for predicting the evolution of the climate system,extending global surface air temperature(GSAT)forecasts through 2500.展开更多
Available online Alkaline water electrolysis(AWE)is a prominent technique for obtaining a sustainable hydrogen source and effectively managing the energy infrastructure.Noble metal-based electrocatalysts,owing to thei...Available online Alkaline water electrolysis(AWE)is a prominent technique for obtaining a sustainable hydrogen source and effectively managing the energy infrastructure.Noble metal-based electrocatalysts,owing to their exceptional hydrogen binding energy,exhibit remarkable catalytic activity and long-term stability in the hydrogen evolution reaction(HER).However,the restricted accessibility and exorbitant cost of noble-metal materials pose obstacles to their extensive adoption in industrial contexts.This review investigates strategies aimed at reducing the dependence on noble-metal electrocatalysts and developing a cost-effective alkaline HER catalyst,while considering the principles of sustainable development.The initial discussion covers the fundamental principle of HER,followed by an overview of prevalent techniques for synthesizing catalysts based on noble metals,along with a thorough examination of recent advancements.The subsequent discussion focuses on the strategies employed to improve noble metalbased catalysts,including enhancing the intrinsic activity at active sites and increasing the quantity of active sites.Ultimately,this investigation concludes by examining the present state and future direction of research in the field of electrocatalysis for the HER.展开更多
Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomi...Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses.Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.Results Fifty-eight poxvirus species,representing two subfamilies and 20 genera,were identified,with 212 poxviral sequences assembled.A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes.These genomic sequences contained fragments originating from rodents,archaea,and arthropods.Conclusion Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses.These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer,gene recombination,and gene mutations,thereby promoting co-existence and co-evolution with their hosts.This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.展开更多
Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a b...Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration.展开更多
An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of t...An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.展开更多
In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Ther...In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.展开更多
文摘A composite electrocatalyst,CoMoNiO-S/NF-110(NF is nickel foam),was synthesized through electrodeposition,followed by pyrolysis and then the vulcanization process.CoMoNiO-S/NF-110 exhibited a structure where Ni3S2 and Mo2S3 nanoparticles were integrated at the edges of Co3O4 nanosheets,creating a rich,heterogeneous interface that enhances the synergistic effects of each component.In an alkaline electrolyte,the synthesized CoMoNiO-S/NF-110 exhibited superior electrocatalytic performance for oxygen evolution reaction(OER),achieving current densities of 100 and 200 mA·cm^(-2) with low overpotentials of 199.4 and 224.4 mV,respectively,outperforming RuO2 and several high-performance Mo and Ni-based catalysts.This excellent performance is attributed to the rich interface formed between the components and active sites exposed by the defect structure.
文摘The poor electrical conductivity of metal-organic frameworks(MOFs)limits their electrocatalytic performance in the oxygen evolution reaction(OER).In this study,a Py@Co-MOF composite material based on pyrene(Py)molecules and{[Co2(BINDI)(DMA)_(2)]·DMA}_(n)(Co-MOF,H4BINDI=N,N'-bis(5-isophthalic acid)naphthalenediimide,DMA=N,N-dimethylacetamide)was synthesized via a one-pot method,leveragingπ-πinteractions between pyrene and Co-MOF to modulate electrical conductivity.Results demonstrate that the Py@Co-MOF catalyst exhibited significantly enhanced OER performance compared to pure Co-MOF or pyrene-based electrodes,achieving an overpotential of 246 mV at a current density of 10 mA·cm^(-2) along with excellent stability.Density functional theory(DFT)calculations reveal that the formation of O*in the second step is the rate-determining step(RDS)during the OER process on Co-MOF,with an energy barrier of 0.85 eV due to the weak adsorption affinity of the OH*intermediate for Co sites.CCDC:2419276.
文摘The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.
基金supported by The China Ethnic Medicine Association Research Grant(No.2023MY055-81)Science and Technology Program of the Joint Fund of Scientific Research for the Public Hospitals of Inner Mongolia Academy of Medical Sciences(2023GLLHD177,2023GLLH0174)Inner Mongolia Autonomous Region Regional Medical Center for Specialized Care(2025).
文摘Serbisütherapy(ST)is a distinctive external treatment modality within traditional Mongolian medicine(TMM),historically developed within a nomadic cultural framework.This study presents a comprehensive philological and historical analysis of ST,tracing its evolution from early battlefield applications to contemporary clinical use.By critically examining classical Mongolian medical texts alongside modern case studies,we aim to systematize ST’s therapeutic methods,indications,and limitations,while exploring its mechanisms of action through both traditional theory and modern biomedical perspectives.ST has undergone significant transformation,shifting from whole-body cavity immersion in the 13th century to targeted,organ-specific applications in modern practice.Its four primary methods–Covering,Mounted,Organ Placement,and Suction–demonstrate efficacy in treating cold-natured diseases,musculoskeletal disorders,gynecological conditions,and certain emergencies.ST embodies the core principles of TMM,particularly the balance of the“Three Roots”and the correction of cold-induced pathologies through heat.Despite challenges related to standardization,cultural translation,and regulatory acceptance,ST holds translational potential for integrative medicine.Future research should prioritize mechanistic validation,clinical standardization,and the development of biocompatible thermal technologies to bridge traditional practice with modern healthcare systems.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
基金financially supported by the National Natural Science Foundation of China(52373271)Science,Technology and Innovation Commission of Shenzhen Municipality under Grant(KCXFZ20201221173004012)+1 种基金National Key Research and Development Program of Shaanxi Province(No.2023-YBNY-271)Open Testing Foundation of the Analytical&Testing Center of Northwestern Polytechnical University(2023T019).
文摘Gradient magnetic heterointerfaces have injected infinite vitality in optimizing impedance matching,adjusting dielectric/magnetic resonance and promoting electromagnetic(EM)wave absorption,but still exist a significant challenging in regulating local phase evolution.Herein,accordion-shaped Co/Co_(3)O_(4)@N-doped carbon nanosheets(Co/Co_(3)O_(4)@NC)with gradient magnetic heterointerfaces have been fabricated via the cooperative high-temperature carbonization and lowtemperature oxidation process.The results indicate that the surface epitaxial growth of crystal Co_(3)O_(4) domains on local Co nanoparticles realizes the adjustment of magnetic-heteroatomic components,which are beneficial for optimizing impedance matching and interfacial polarization.Moreover,gradient magnetic heterointerfaces simultaneously realize magnetic coupling,and long-range magnetic diffraction.Specifically,the synthesized Co/Co_(3)O_(4)@NC absorbents display the strong electromagnetic wave attenuation capability of−53.5 dB at a thickness of 3.0 mm with an effective absorption bandwidth of 5.36 GHz,both are superior to those of single magnetic domains embedded in carbon matrix.This design concept provides us an inspiration in optimizing interfacial polarization,regulating magnetic coupling and promoting electromagnetic wave absorption.
文摘Binary composites(ZIF-67/rGO)were synthesized by one-step precipitation method using cobalt nitrate hexahydrate as metal source,2-methylimidazole as organic ligand,and reduced graphene oxide(rGO)as carbon carrier.Then Ru3+was introduced for ion exchange,and the porous Ru-doped Co_(3)O_(4)/rGO(Ru-Co_(3)O_(4)/rGO)composite electrocatalyst was prepared by annealing.The phase structure,morphology,and valence state of the catalyst were analyzed by X-ray powder diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy(XPS).In 1 mol·L^(-1)KOH,the oxygen evolution reaction(OER)performance of the catalyst was measured by linear sweep voltammetry,cyclic voltammetry,and chronoamperometry.The results show that the combination of Ru doping and rGO provides a fast channel for collaborative electron transfer.At the same time,rGO as a carbon carrier can improve the electrical conductivity of Ru-Co_(3)O_(4)particles,and the uniformly dispersed nanoparticles enable the reactants to diffuse freely on the catalyst.The results showed that the electrochemical performance of Ru-Co_(3)O_(4)/rGO was much better than that of Co_(3)O_(4)/rGO,and the overpotential of Ru-Co_(3)O_(4)/rGO was 363.5 mV at the current density of 50 mA·cm^(-2).
基金National Natural Science Foundation of China(U22A20191)。
文摘Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
文摘Sulfur-doped iron-cobalt tannate nanorods(S-FeCoTA)derived from metal-organic frameworks(MOFs)as electrocatalysts were synthesized via a one-step hydrothermal method.The optimized S-FeCoTA was interlaced by loose nanorods,which had many voids.The S-FeCoTA catalysts exhibited excellent electrochemical oxygen evolution reaction(OER)performance with a low overpotential of 273 mV at 10 mA·cm^(-2)and a small Tafel slope of 36 mV·dec^(-1)in 1 mol·L^(-1)KOH.The potential remained at 1.48 V(vs RHE)at 10 mA·cm^(-2)under continuous testing for 15 h,implying that S-FeCoTA had good stability.The Faraday efficiency of S-FeCoTA was 94%.The outstanding OER activity of S-FeCoTA is attributed to the synergistic effects among S,Fe,and Co,thus promoting electron transfer,reducing the reaction kinetic barrier,and enhancing the OER performance.
基金Under the auspices of National Natural Science Foundation of China(No.42371192)Natural Science Foundation of Hunan Province(No.2023JJ30100)Social Science Foundation of Hunan Province(No.23ZDAJ023,23YBA133)。
文摘Cities are important carriers of green innovation.The foundation for accelerating China's ecological civilization construction and fostering regionally coordinated and sustainable development is quantitative analysis of the spatial evolution pattern and influencing factors of urban green innovation,as well as revealing the development differences between regions.This study's research object includes 284 Chinese cities that are at the prefecture level or above,excluding Xizang,Hong Kong,Macao,and Taiwan of China due to incomplete data.The spatial evolution characteristics of urban green innovation in China between 2005 and 2021 are comprehensively described using the gravity center model and boxplot analysis.The factors that affect urban green innovation are examined using the spatial Durbin model(SDM).The findings indicate that:1)over the period of the study,the gravity center of urban green innovation in China has always been distributed in the Henan-Anhui border region,showing a migration characteristic of‘initially shifting northeast,subsequently southeast',and the migration speed has gradually increased.2)Although there are also noticeable disparities in east-west,the north-south gap is the main cause of the shift in China's urban green innovation gravity center.The primary areas of urban green innovation in China are the cities with green innovation levels higher than the median.3)The main influencing factor of urban green innovation is the industrial structure level.The effect of the financial development level,the government intervention level,and the openness to the outside world degree on urban green innovation is weakened in turn.The environmental regulation degree is not truly influencing urban green innovation.The impact of various factors on green innovation across cities of different sizes,exhibiting heterogeneity.This study is conducive to broadening the academic community's comprehension of the spatial evolution characteristics of urban green innovation and offering a theoretical framework for developing policies for the all-encompassing green transformation of social and economic growth.
基金partially supported by U.S.National Science Foundation grants EAR1925965 and RISE-2425889support from the European Research Council under the European Union Horizon 2020 research and innovation program(grant agreement no.742335,FIMAGE)。
文摘Several physical mechanisms of earthquake nucleation,such as pre-slip,cascade triggering,aseismic slip,and fluid-driven models,have been proposed.However,it is still not clear which model plays the most important role in driving foreshocks and mainshock nucleation for given cases.In this study,we focus on the relationship between an intensive earthquake swarm that started beneath the Noto Peninsula in Central Japan since November 2020 and the nucleation of the 2024 M 7.6 Noto Hanto earthquake.We relocate earthquakes listed in the standard Japan Meteorological Agency(JMA)catalog since 2018 with the double-different relocation method.Relocated seismicity revealed that the 2024 M 7.6 mainshock likely ruptured a thrust fault above a parallel fault where the M 6.5 Suzu earthquake occurred in May 2023.We find possible along-strike and along-dip expansion of seismicity in the first few months at the beginning of the swarm sequence,while no obvious migration pattern in the last few days before the M 7.6 mainshock was observed.Several smaller events occurred in between the M 5.5 and M 4.6 foreshocks that occurred about 4min and 2 min before the M 7.6 mainshock.The Coulomb stress changes from the M 5.5 foreshock were negative at the hypocenter of the M 7.6 mainshock,which is inconsistent with a simple cascade triggering model.Moreover,an M 5.9 foreshock was identified in the JMA catalog 14 s before the mainshock.Results from backprojection of high-frequency teleseismic P waves show a prolonged initial rupture process near the mainshock hypocenter lasting for~25 s,before propagating bilaterally outward.Our results suggest a complex evolution process linking the earthquake swarm to the nucleation of the M 7.6 mainshock at a region of complex structures associated with the bend of a mapped large-scale reverse fault.A combination of fluid migration,aseismic slip and elastic stress triggering likely work in concert to drive both the prolonged earthquake swarm and the nucleation of the M 7.6 mainshock.
基金supported by the National Key R&D Plan of China(No.2022YFB3705603)the National Natural Science Foundation of China(No.52101046)+1 种基金the Excellent Youth Overseas Project of National Science and Natural Foundation of China,the Baowu Special Metallurgy Cooperation Limited(No.22H010101336)the Medicine-Engineering Interdisciplinary Project of Shanghai Jiao Tong University(No.YG2022QN076).
文摘Titanium(Ti)and its alloys are frequently utilized as critical components in a variety of engineering ap-plications because of their high specific strength and excellent corrosion resistance.Compared to conven-tional surface strengthening technologies,laser shock peening(LSP)has increasingly attracted attention from researchers and industries,since it significantly improves the surface strength,biocompatibility,fa-tigue resistance,and anti-corrosion ability of Ti and its alloys.Despite numerous studies that have been carried out to elucidate the effects of LSP on microstructural evolution and mechanical properties of Ti and its alloys in recent years,a comprehensive review of recent advancements in the field of Ti and its alloys subjected to LSP is still lacking.In this review,the standard LSP and the novel process designs of LSP assisted by thermal,cryogenic,electropulsing and magnetic fields are discussed and compared.Microstructural evolution,with focuses on the dislocation dynamics,deformation twinning,grain refine-ment and surface amorphization,during LSP processing of Ti alloys is reviewed.Furthermore,the en-hanced engineering performance of the L SP-processed(L SPed)Ti alloys,including surface hardness,wear resistance,fatigue life and corrosion resistance are summarized.Finally,this review concludes by present-ing an overview of the current challenges encountered in this field and offering insights into anticipated future trends.
基金the National Natural Science Foundation of China(Key Program)(52031004).
文摘The characterization techniques were employed like transmission electron microscope,X-ray diffraction and microstructural characterization to investigate microstructural evolution and impact of precipitate-phase precipitation on strength and toughness of a self-developed 32Si_(2)CrNi_(2)MoVNb steel during the quenching and tempering process.Research outputs indicated that the steel microstructure under the quenching state could be composed of martensite with a high dislocation density,a small amount of residual austenite,and many dispersed spherical MC carbides.In details,after tempering at 200℃,fine needle-shapedε-carbides would precipitate,which may improve yield strength and toughness of the steel.However,as compared to that after tempering at 200℃,the average length of needle-shapedε-carbides was found to increase to 144.1±4 from 134.1±3 nm after tempering at 340℃.As a result,the yield strength may increase to 1505±40 MPa,and the impact absorption energy(V-notch)may also decrease.Moreover,after tempering at 450℃,thoseε-carbides in the steel may transform into coarse rod-shaped cementite,and dislocation recoveries at such high tempering temperature may lead to decrease of strength and toughness of the steel.Finally,the following properties could be obtained:a yield strength of 1440±35 MPa,an ultimate tensile strength of 1864±50 MPa and an impact absorption energy of 45.9±4 J,by means of rational composition design and microstructural control.
基金Natural science foundation of Inner Mongolia(2024LHMS06018)The basic scientific research funding for directly affiliated universities in the Inner Mongolia(JY20250094)。
文摘A complex system is inherently high-dimensional.Recent studies indicate that,even without complete knowledge of its evolutionary dynamics,the future behavior of such a system can be predicted using time-series data(data-driven prediction).This suggests that the essential dynamics of a complex system can be captured through a low-dimensional representation.Virus evolution and climate change are two examples of complex,time-varying systems.In this article,we show that mutations in the spike protein provide valuable data for predicting SARS-CoV-2 variants,forecasting the possible emergence of the new macro-lineage Q in the near future.Our analysis also demonstrates that carbon dioxide concentration is a reliable indicator for predicting the evolution of the climate system,extending global surface air temperature(GSAT)forecasts through 2500.
基金financial support by the National Natural Science Foundation of China(No.52102241)Doctor of Suzhou University Scientific Research Foundation(Nos.2022BSK019,2020BS015)+2 种基金the Primary Research and Development Program of Anhui Province(No.201904a05020087)the Natural Science Research Project in Universities of Anhui Province in China(Nos.2022AH051386,KJ2021A1114)the Foundation(No.GZKF202211)of State Key Laboratory of Biobased Material and Green Papermaking Qilu University of Technology。
文摘Available online Alkaline water electrolysis(AWE)is a prominent technique for obtaining a sustainable hydrogen source and effectively managing the energy infrastructure.Noble metal-based electrocatalysts,owing to their exceptional hydrogen binding energy,exhibit remarkable catalytic activity and long-term stability in the hydrogen evolution reaction(HER).However,the restricted accessibility and exorbitant cost of noble-metal materials pose obstacles to their extensive adoption in industrial contexts.This review investigates strategies aimed at reducing the dependence on noble-metal electrocatalysts and developing a cost-effective alkaline HER catalyst,while considering the principles of sustainable development.The initial discussion covers the fundamental principle of HER,followed by an overview of prevalent techniques for synthesizing catalysts based on noble metals,along with a thorough examination of recent advancements.The subsequent discussion focuses on the strategies employed to improve noble metalbased catalysts,including enhancing the intrinsic activity at active sites and increasing the quantity of active sites.Ultimately,this investigation concludes by examining the present state and future direction of research in the field of electrocatalysis for the HER.
基金financially supported by the Shanghai New Three-Year Action Plan for Public Health(Grant No.GWVI-11.1-03)National Natural Science Foundation of China(Grant No.81872673).
文摘Objective Poxviruses are zoonotic pathogens that infect humans,mammals,vertebrates,and arthropods.However,the specific role of ticks in transmission and evolution of these viruses remains unclear.Methods Transcriptomic and metatranscriptomic raw data from 329 sampling pools of seven tick species across five continents were mined to assess the diversity and abundance of poxviruses.Chordopoxviral sequences were assembled and subjected to phylogenetic analysis to trace the origins of the unblasted fragments within these sequences.Results Fifty-eight poxvirus species,representing two subfamilies and 20 genera,were identified,with 212 poxviral sequences assembled.A substantial proportion of AT-rich fragments were detected in the assembled poxviral genomes.These genomic sequences contained fragments originating from rodents,archaea,and arthropods.Conclusion Our findings indicate that ticks play a significant role in the transmission and evolution of poxviruses.These viruses demonstrate the capacity to modulate virulence and adaptability through horizontal gene transfer,gene recombination,and gene mutations,thereby promoting co-existence and co-evolution with their hosts.This study advances understanding of the ecological dynamics of poxvirus transmission and evolution and highlights the potential role of ticks as vectors and vessels in these processes.
基金supported by National Natural Science Foundation of China(NSFC,22338006,92356301,9235630033 and 22375062)Shanghai Municipal Science and Technology Major Project(21JC1401700)+4 种基金Shanghai Pilot Program for Basic Research(22TQ1400100-10)Fundamental Research Funds for the Central UniversitiesShanghai Pujiang Program(22PJ1402400)“Chenguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(22CGA32)the Young Elite Scientists Sponsorship Program by CAST(2023QNRC001).
文摘Organic nanophotocatalysts are promising candidates for solar fuels production,but they still face the challenge of unfavorable geminate recombination due to the limited exciton diffusion lengths.Here,we introduce a binary nanophotocatalyst fabricated by blending two polymers,PS-PEG5(PS)and PBT-PEG5(PBT),with matched absorption and emission spectra,enabling a Forster resonance energy transfer(FRET)process for enhanced photocatalysis.These heterostructure nanophotocatalysts are processed using a facile and scalable flash nanoprecipitation(FNP)technique with precious kinetic control over binary nanoparticle formation.The resulting nanoparticles exhibit an exceptional photocatalytic hydrogen evolution rate up to 65 mmol g^(-1) h^(-1),2.5 times higher than that single component nanoparticles.Characterizations through fluorescence spectra and transient absorption spectra confirm the hetero-energy transfer within the binary nanoparticles,which prolongs the excited-state lifetime and extends the namely“effective exciton diffusion length”.Our finding opens new avenues for designing efficient organic photocatalysts by improving exciton migration.
基金supported by the National Natural Science Foundation of China(No.51905123)Major Scientific and Technological Innovation Program of Shandong Province,China(Nos.2020CXGC010303,2022ZLGX04)Key R&D Programme of Shandong Province,China(No.2022JMRH0308).
文摘An internal state variable(ISV)model was established according to the experimental results of hot plane strain compression(PSC)to predict the microstructure evolution during hot spinning of ZK61 alloy.The effects of the internal variables were considered in this ISV model,and the parameters were optimized by genetic algorithm.After validation,the ISV model was used to simulate the evolution of grain size(GS)and dynamic recrystallization(DRX)fraction during hot spinning via Abaqus and its subroutine Vumat.By comparing the simulated results with the experimental results,the application of the ISV model was proven to be reliable.Meanwhile,the strength of the thin-walled spun ZK61 tube increased from 303 to 334 MPa due to grain refinement by DRX and texture strengthening.Besides,some ultrafine grains(0.5μm)that played an important role in mechanical properties were formed due to the proliferation,movement,and entanglement of dislocations during the spinning process.
基金supported by National Natural Science Foundation of China (No.U23A20597)National Major Science and Technology Project of China (No.2024ZD1003803)+1 种基金Chongqing Science Fund for Distinguished Young Scholars of Chongqing Municipality (No.CSTB2022NSCQ-JQX0028)Natural Science Foundation of Chongqing (No.CSTB2024NSCQ-MSX0503)。
文摘In the application of high-pressure water jet assisted breaking of deep underground rock engineering,the influence mechanism of rock temperature on the rock fragmentation process under jet action is still unclear.Therefore,the fluid evolution characteristics and rock fracture behavior during jet impingement were studied.The results indicate that the breaking process of high-temperature rock by jet impact can be divided into four stages:initial fluid-solid contact stage,intense thermal exchange stage,perforation and fracturing stage,and crack propagation and penetration stage.With the increase of rock temperature,the jet reflection angles and the time required for complete cooling of the impact surface significantly decrease,while the number of cracks and crack propagation rate significantly increase,and the rock breaking critical time is shortened by up to 34.5%.Based on numerical simulation results,it was found that the center temperature of granite at 400℃ rapidly decreased from 390 to 260℃ within 0.7 s under jet impact.In addition,a critical temperature and critical heat flux prediction model considering the staged breaking of hot rocks was established.These findings provide valuable insights to guide the water jet technology assisted deep ground hot rock excavation project.