Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes...Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.展开更多
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to...The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.展开更多
The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study...The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some extent, can result in premature convergence of genes (PCG) in the same locus. The above drawback of the traditional mutation operator causes the loss of critical alleles. Inspired by digital technique, we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function optimization show that the improved mutation operator can effectively prevent premature convergence, and can provide a wide selection range of control parameters for GA.展开更多
In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a singl...In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a single mutation operator, typically a Gaussian. Using a variety of mutation operators that can be combined during evolution to generate different probability density function could hold the potential for producing better solutions with less computational effort. In view of this, a linear combination mutation operator of Gaussian and Cauchy mutation is presented in this paper, and a novel clonal selection optimization method based on clonal selection principle is proposed also. The simulation results show the combining mutation strategy can obtain the same performance as the best of pure strategies or even better in some cases.展开更多
针对霜冰优化算法的搜索策略单一化,算法后期搜索开发能力有限,导致算法稳定性不足,提出了一种基于t分布扰动因子和随机差分变异算子的改进策略。在霜冰优化算法的硬刺穿透机制的基础上,引入了t分布扰动因子,局部范围内扩大算法的搜索范...针对霜冰优化算法的搜索策略单一化,算法后期搜索开发能力有限,导致算法稳定性不足,提出了一种基于t分布扰动因子和随机差分变异算子的改进策略。在霜冰优化算法的硬刺穿透机制的基础上,引入了t分布扰动因子,局部范围内扩大算法的搜索范围,试图在最优位置周围探索更优的位置。在算法迭代完成后,利用随机差分变异算子对最新更新的粒子位置进行突变,得到更优的粒子。通过测试集CEC2017和CEC2022,与同类算法进行对比实验,发现改进后的霜冰优化算法搜索能力更强,稳定性更好。同时进行了Wilcoxon符号秩检验,验证了算法的显著性差异。利用经典测试函数,从最优值迭代曲线、平均适应度值、第一维度变化趋势和种群历史位置4个维度展开,对算法特征进行了分析。最后应用改进后的霜冰优化算法优化PID(proportional integral derivative)参数进行仿真实验,验证了算法的有效性和适用性。展开更多
多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization o...多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization of decision variables,MOFA-GD)。引入决策变量分组机制,根据各变量对算法性能的不同影响,将整体决策变量划分成收敛性变量组和多样性变量组;设计决策变量分组优化模型,利用学习行为优化收敛性变量组,加快种群收敛速度,非均匀变异算子优化多样性变量组,避免种群过早收敛,逐渐减小的变异幅度引导种群局部开发,提升算法寻优精度;采用档案截断策略维护外部档案,精准删除拥挤个体,从而保持外部档案的多样性。实验结果表明:MOFA-GD表现出优秀的收敛速度和寻优精度,获得了均匀分布的Pareto解集。本文所提算法为求解多目标优化问题提供了一种高效且可靠的解决方案。展开更多
A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential tra...A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential transformation. For float-point represented chromosomes, crossover and mutation operators are given. Convergence of the algorithm is proved. The performance is tested by two generally used functions. Hybrid algorithm which takes the BP algorithm as a mutation operator is used to train a neural network for image recognition. Experimental results show that the proposed algorithm is an efficient global optimization algorithm.展开更多
This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear c...This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB.展开更多
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera...An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability.展开更多
A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover opera...A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm.展开更多
基金the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(Grant Number IMSIU-RP23030).
文摘Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances.
基金supported by the National Social Science Fund of China(2022-SKJJ-B-084).
文摘The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm.
文摘The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some extent, can result in premature convergence of genes (PCG) in the same locus. The above drawback of the traditional mutation operator causes the loss of critical alleles. Inspired by digital technique, we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function optimization show that the improved mutation operator can effectively prevent premature convergence, and can provide a wide selection range of control parameters for GA.
基金This work was supported by the National Natural Science Foundation of China (No50335030)
文摘In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a single mutation operator, typically a Gaussian. Using a variety of mutation operators that can be combined during evolution to generate different probability density function could hold the potential for producing better solutions with less computational effort. In view of this, a linear combination mutation operator of Gaussian and Cauchy mutation is presented in this paper, and a novel clonal selection optimization method based on clonal selection principle is proposed also. The simulation results show the combining mutation strategy can obtain the same performance as the best of pure strategies or even better in some cases.
文摘针对霜冰优化算法的搜索策略单一化,算法后期搜索开发能力有限,导致算法稳定性不足,提出了一种基于t分布扰动因子和随机差分变异算子的改进策略。在霜冰优化算法的硬刺穿透机制的基础上,引入了t分布扰动因子,局部范围内扩大算法的搜索范围,试图在最优位置周围探索更优的位置。在算法迭代完成后,利用随机差分变异算子对最新更新的粒子位置进行突变,得到更优的粒子。通过测试集CEC2017和CEC2022,与同类算法进行对比实验,发现改进后的霜冰优化算法搜索能力更强,稳定性更好。同时进行了Wilcoxon符号秩检验,验证了算法的显著性差异。利用经典测试函数,从最优值迭代曲线、平均适应度值、第一维度变化趋势和种群历史位置4个维度展开,对算法特征进行了分析。最后应用改进后的霜冰优化算法优化PID(proportional integral derivative)参数进行仿真实验,验证了算法的有效性和适用性。
文摘多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization of decision variables,MOFA-GD)。引入决策变量分组机制,根据各变量对算法性能的不同影响,将整体决策变量划分成收敛性变量组和多样性变量组;设计决策变量分组优化模型,利用学习行为优化收敛性变量组,加快种群收敛速度,非均匀变异算子优化多样性变量组,避免种群过早收敛,逐渐减小的变异幅度引导种群局部开发,提升算法寻优精度;采用档案截断策略维护外部档案,精准删除拥挤个体,从而保持外部档案的多样性。实验结果表明:MOFA-GD表现出优秀的收敛速度和寻优精度,获得了均匀分布的Pareto解集。本文所提算法为求解多目标优化问题提供了一种高效且可靠的解决方案。
基金Supported by the National Natural Science Foundation
文摘A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential transformation. For float-point represented chromosomes, crossover and mutation operators are given. Convergence of the algorithm is proved. The performance is tested by two generally used functions. Hybrid algorithm which takes the BP algorithm as a mutation operator is used to train a neural network for image recognition. Experimental results show that the proposed algorithm is an efficient global optimization algorithm.
文摘This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB.
基金the Research Fund for the Doctoral Program of Higher Education of China (20020008004).
文摘An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability.
文摘A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm.