期刊文献+
共找到512篇文章
< 1 2 26 >
每页显示 20 50 100
Appropriate Combination of Crossover Operator and Mutation Operator in Genetic Algorithms for the Travelling Salesman Problem
1
作者 Zakir Hussain Ahmed Habibollah Haron Abdullah Al-Tameem 《Computers, Materials & Continua》 SCIE EI 2024年第5期2399-2425,共27页
Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes... Genetic algorithms(GAs)are very good metaheuristic algorithms that are suitable for solving NP-hard combinatorial optimization problems.AsimpleGAbeginswith a set of solutions represented by a population of chromosomes and then uses the idea of survival of the fittest in the selection process to select some fitter chromosomes.It uses a crossover operator to create better offspring chromosomes and thus,converges the population.Also,it uses a mutation operator to explore the unexplored areas by the crossover operator,and thus,diversifies the GA search space.A combination of crossover and mutation operators makes the GA search strong enough to reach the optimal solution.However,appropriate selection and combination of crossover operator and mutation operator can lead to a very good GA for solving an optimization problem.In this present paper,we aim to study the benchmark traveling salesman problem(TSP).We developed several genetic algorithms using seven crossover operators and six mutation operators for the TSP and then compared them to some benchmark TSPLIB instances.The experimental studies show the effectiveness of the combination of a comprehensive sequential constructive crossover operator and insertion mutation operator for the problem.The GA using the comprehensive sequential constructive crossover with insertion mutation could find average solutions whose average percentage of excesses from the best-known solutions are between 0.22 and 14.94 for our experimented problem instances. 展开更多
关键词 Travelling salesman problem genetic algorithms crossover operator mutation operator comprehensive sequential constructive crossover insertion mutation
在线阅读 下载PDF
An improved genetic algorithm for causal discovery
2
作者 MAO Tengjiao BU Xianjin +2 位作者 CAI Chunxiao LU Yue DU Jing 《Journal of Systems Engineering and Electronics》 2025年第3期768-777,共10页
The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to... The learning algorithms of causal discovery mainly include score-based methods and genetic algorithms(GA).The score-based algorithms are prone to searching space explosion.Classical GA is slow to converge,and prone to falling into local optima.To address these issues,an improved GA with domain knowledge(IGADK)is proposed.Firstly,domain knowledge is incorporated into the learning process of causality to construct a new fitness function.Secondly,a dynamical mutation operator is introduced in the algorithm to accelerate the convergence rate.Finally,an experiment is conducted on simulation data,which compares the classical GA with IGADK with domain knowledge of varying accuracy.The IGADK can greatly reduce the number of iterations,populations,and samples required for learning,which illustrates the efficiency and effectiveness of the proposed algorithm. 展开更多
关键词 genetic algorithm(GA) causal discovery convergence rate fitness function mutation operator
在线阅读 下载PDF
Improved genetic operator for genetic algorithm 被引量:4
3
作者 林峰 杨启文 《Journal of Zhejiang University Science》 CSCD 2002年第4期431-434,共4页
The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study... The mutation operator has been seldom improved because researchers hardly suspect its ability to prevent genetic algorithm (GA) from converging prematurely. Due to its importance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some extent, can result in premature convergence of genes (PCG) in the same locus. The above drawback of the traditional mutation operator causes the loss of critical alleles. Inspired by digital technique, we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function optimization show that the improved mutation operator can effectively prevent premature convergence, and can provide a wide selection range of control parameters for GA. 展开更多
关键词 Genetic algorithm(GA) mutation operator Premature convergence
在线阅读 下载PDF
Immune clonal selection optimization method with combining mutation strategies
4
作者 徐光华 刘弹 梁霖 《Journal of Pharmaceutical Analysis》 SCIE CAS 2007年第2期177-181,共5页
In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a singl... In artificial immune optimization algorithm, the mutation of immune cells has been considered as the key operator that determines the algorithm performance. Traditional immune optimization algorithms have used a single mutation operator, typically a Gaussian. Using a variety of mutation operators that can be combined during evolution to generate different probability density function could hold the potential for producing better solutions with less computational effort. In view of this, a linear combination mutation operator of Gaussian and Cauchy mutation is presented in this paper, and a novel clonal selection optimization method based on clonal selection principle is proposed also. The simulation results show the combining mutation strategy can obtain the same performance as the best of pure strategies or even better in some cases. 展开更多
关键词 artificial immune system optimization algorithm mutation operator
在线阅读 下载PDF
基于遗传模拟退火算法的智能仓储多AGV调度研究
5
作者 潘翔 徐凯 《浙江工业大学学报》 北大核心 2025年第5期483-489,共7页
在物流业需求快速发展及智能制造的背景下,考虑自动导引车(Automated guided vehicle,AGV)在自动化仓库中只参与装卸和搬运工作,根据仓储AGV的工作特点,在考虑车辆电量约束的情况下,建立了以最短总完工距离为优化目标的任务调度模型。... 在物流业需求快速发展及智能制造的背景下,考虑自动导引车(Automated guided vehicle,AGV)在自动化仓库中只参与装卸和搬运工作,根据仓储AGV的工作特点,在考虑车辆电量约束的情况下,建立了以最短总完工距离为优化目标的任务调度模型。针对传统遗传算法收敛速度慢、局部搜索能力弱等问题,在领域搜索策略上引入大规模变异算子,以提升种群多样性。同时引入基于种群搜索的模拟退火算法,在增强算法局部寻优能力的同时,有效缩短了寻优时间。在包含20个搬运任务、32个存储单位的仿真场景中,采用传统任务调度算法和笔者所提算法对模型进行求解,结果证明笔者所提算法对实际算例有较好的求解效果,可以有效提高自动化仓储作业效率。 展开更多
关键词 遗传模拟退火算法 多AGV调度 大规模变异算子 种群搜索
在线阅读 下载PDF
混合策略改进的哈里斯鹰优化算法 被引量:1
6
作者 李雪 丁正生 《云南大学学报(自然科学版)》 北大核心 2025年第1期60-69,共10页
针对原始哈里斯鹰优化(Harris Hawks optimization,HHO)算法收敛精度低、收敛速度慢和易陷入局部最优的问题,提出一种混合策略改进的哈里斯鹰优化算法(Sinh Cosh Cauchy Harris Hawks optimization,SCCHHO).首先,使用佳点集初始化种群,... 针对原始哈里斯鹰优化(Harris Hawks optimization,HHO)算法收敛精度低、收敛速度慢和易陷入局部最优的问题,提出一种混合策略改进的哈里斯鹰优化算法(Sinh Cosh Cauchy Harris Hawks optimization,SCCHHO).首先,使用佳点集初始化种群,增加种群多样性;其次,引入双曲正余弦权重因子提高算法的全局搜索能力;然后,在局部搜索阶段引入柯西变异算子,帮助算法跳出局部最优;另外,采用了重启策略,提高了算法的收敛精度和后期的搜索能力.仿真实验采用不同类型的测试函数对改进算法进行了性能测试,实验数据结果、Wilcoxon符号秩检验和算法的收敛曲线表明算法的优越性.并通过对压力容器设计问题求解,验证了SCCHHO算法具有良好的适用性和有效性.最后,利用改进算法优化最小二乘支持向量机参数,并应用于波士顿房价预测,实验结果进一步验证混合策略改进的哈里斯鹰优化算法是有效的. 展开更多
关键词 哈里斯鹰优化算法 佳点集 双曲正余弦惯性权重 柯西变异 重启策略
在线阅读 下载PDF
基于t分布扰动因子和随机差分变异算子的改进霜冰优化算法
7
作者 王佩怡 陈岩 《科学技术与工程》 北大核心 2025年第31期13210-13226,共17页
针对霜冰优化算法的搜索策略单一化,算法后期搜索开发能力有限,导致算法稳定性不足,提出了一种基于t分布扰动因子和随机差分变异算子的改进策略。在霜冰优化算法的硬刺穿透机制的基础上,引入了t分布扰动因子,局部范围内扩大算法的搜索范... 针对霜冰优化算法的搜索策略单一化,算法后期搜索开发能力有限,导致算法稳定性不足,提出了一种基于t分布扰动因子和随机差分变异算子的改进策略。在霜冰优化算法的硬刺穿透机制的基础上,引入了t分布扰动因子,局部范围内扩大算法的搜索范围,试图在最优位置周围探索更优的位置。在算法迭代完成后,利用随机差分变异算子对最新更新的粒子位置进行突变,得到更优的粒子。通过测试集CEC2017和CEC2022,与同类算法进行对比实验,发现改进后的霜冰优化算法搜索能力更强,稳定性更好。同时进行了Wilcoxon符号秩检验,验证了算法的显著性差异。利用经典测试函数,从最优值迭代曲线、平均适应度值、第一维度变化趋势和种群历史位置4个维度展开,对算法特征进行了分析。最后应用改进后的霜冰优化算法优化PID(proportional integral derivative)参数进行仿真实验,验证了算法的有效性和适用性。 展开更多
关键词 霜冰优化算法 t分布扰动因子 随机差分变异算子 PID参数优化
在线阅读 下载PDF
改进霜冰优化算法用于无人机三维路径规划
8
作者 汪家伟 付盛伟 黄海松 《电子测量技术》 北大核心 2025年第9期44-55,共12页
霜冰优化算法(RIME)是一种受霜冰自然生长过程启发的智能优化算法,通过软霜冰策略实现全局搜索,硬霜冰策略实现局部开发,具有较强的寻优能力。然而,RIME在应用中存在收敛速度较慢及易陷入局部最优的问题。为此,本文提出一种改进的霜冰... 霜冰优化算法(RIME)是一种受霜冰自然生长过程启发的智能优化算法,通过软霜冰策略实现全局搜索,硬霜冰策略实现局部开发,具有较强的寻优能力。然而,RIME在应用中存在收敛速度较慢及易陷入局部最优的问题。为此,本文提出一种改进的霜冰优化算法(IRIME)。首先,在算法的初期引入动态质心引导策略,显著提升了收敛速度;其次,在迭代后期融入改进的差分变异算子,有效降低算法陷入局部最优的风险;此外,设计了一种新的质心边界调整策略,通过深度挖掘种群信息,实现精度和效率的协同优化。基于CEC2017基准测试集的实验表明,IRIME在优化性能上优于PPSO、AGWO、HPHHO、RIME和SRIME。进一步将IRIME应用于无人机三维路径规划问题,结果显示其在解的质量、收敛稳定性和求解效率方面具有显著优势,为复杂工程优化问题提供了一种高效的解决方案。 展开更多
关键词 霜冰优化算法 差分变异算子 数值优化 无人机三维路路径规划
原文传递
一种面向复杂电磁环境的试验资源调度优化算法
9
作者 姜艳霞 郭国君 +2 位作者 郭海亮 张维 杜明 《无线电工程》 2025年第8期1640-1649,共10页
针对电磁试验场环境存在不确定性、多变性、多样性等特点,导致复杂电磁环境中试验场区用频设备的空间、时间、频谱试验资源调度困难的问题,提出了一种面向复杂电磁环境的试验资源调度优化算法——CVSPSO。利用布局方案的多种影响因素构... 针对电磁试验场环境存在不确定性、多变性、多样性等特点,导致复杂电磁环境中试验场区用频设备的空间、时间、频谱试验资源调度困难的问题,提出了一种面向复杂电磁环境的试验资源调度优化算法——CVSPSO。利用布局方案的多种影响因素构建适应度函数,结合所提出的多维相似度计算以及基于自适应相似度阈值的凝聚式层次聚类算法提高局部多样性。在此基础上,提出一种改进的高斯变异方法,进一步提高种群随机多样性。在标准测试函数以及Unreal Engine 4(UE4)仿真电磁试验环境的用频设备上验证了方法的效果。实验结果表明,所提方法在大多数指标上均优于对比方法,能够为复杂电磁环境的试验资源调度提供优化布局方案,满足电子试验场空间布局与资源调度需求。 展开更多
关键词 复杂电磁环境 多维相似度 凝聚式层次聚类算法 自适应相似度阈值 交叉变异运算
在线阅读 下载PDF
基于改进蜻蜓算法的WSNs分簇路由算法
10
作者 杨佳 汤嘉乐 +1 位作者 田朋 冉国政 《计算机工程与设计》 北大核心 2025年第6期1625-1631,共7页
为解决无线传感器网络分簇路由算法中节点能量效率低,数据传输不稳定等问题,提出一种基于改进蜻蜓算法优化K均值聚类的分簇路由算法MIDA-K。引入变异算子和边界控制机制,增强蜻蜓算法的全局寻优能力,使用改进后的蜻蜓算法,实现网络节点... 为解决无线传感器网络分簇路由算法中节点能量效率低,数据传输不稳定等问题,提出一种基于改进蜻蜓算法优化K均值聚类的分簇路由算法MIDA-K。引入变异算子和边界控制机制,增强蜻蜓算法的全局寻优能力,使用改进后的蜻蜓算法,实现网络节点的聚类分簇;簇内节点根据能量、距离和位置因子动态选举簇头,改善簇头的质量;在数据传输阶段利用改进的蜻蜓算法建立簇间路由,综合考虑能量、距离和丢包率选择下一跳数据转发节点,优化传输路径。仿真结果表明,所提算法能够有效提升数据传输可靠性,延长网络寿命。 展开更多
关键词 无线传感器网络 蜻蜓算法 变异算子 边界控制 K均值聚类 网络寿命 数据传输可靠性
在线阅读 下载PDF
决策变量分组优化的多目标萤火虫算法
11
作者 邢文来 吴润秀 +2 位作者 肖人彬 钟劲文 赵嘉 《智能系统学报》 北大核心 2025年第4期838-857,共20页
多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization o... 多目标萤火虫算法采用整体维度更新策略,常因某几维变量上优化效果不佳,导致算法收敛速度慢和寻优精度低。针对上述问题,本文提出基于决策变量分组优化的多目标萤火虫算法(multi-objective firefly algorithm with group optimization of decision variables,MOFA-GD)。引入决策变量分组机制,根据各变量对算法性能的不同影响,将整体决策变量划分成收敛性变量组和多样性变量组;设计决策变量分组优化模型,利用学习行为优化收敛性变量组,加快种群收敛速度,非均匀变异算子优化多样性变量组,避免种群过早收敛,逐渐减小的变异幅度引导种群局部开发,提升算法寻优精度;采用档案截断策略维护外部档案,精准删除拥挤个体,从而保持外部档案的多样性。实验结果表明:MOFA-GD表现出优秀的收敛速度和寻优精度,获得了均匀分布的Pareto解集。本文所提算法为求解多目标优化问题提供了一种高效且可靠的解决方案。 展开更多
关键词 多目标优化问题 多目标萤火虫算法 变量分组 学习行为 变异算子 档案截断 收敛速度 寻优精度
在线阅读 下载PDF
基于改进PSO算法的联合防空火力目标分配
12
作者 陈平 孙强 王聪 《指挥信息系统与技术》 2025年第2期62-66,共5页
为提高联合防空火力目标分配方案的可靠性和实时性,提出了一种改进粒子群优化算法(PSO)的火力目标分配算法。针对基础粒子群算法收敛速度慢和容易出现早熟停滞的缺点,在离散PSO算法的基础上引入了动态惯性因子和早熟-变异算子,同时,该... 为提高联合防空火力目标分配方案的可靠性和实时性,提出了一种改进粒子群优化算法(PSO)的火力目标分配算法。针对基础粒子群算法收敛速度慢和容易出现早熟停滞的缺点,在离散PSO算法的基础上引入了动态惯性因子和早熟-变异算子,同时,该算法对适应度函数和粒子的移动方式进行了优化,增强了全局搜索能力,提高了收敛速度。最后,仿真结果验证了改进PSO算法的有效性。 展开更多
关键词 火力目标分配 粒子群算法 动态惯性因子 早熟-变异算子
在线阅读 下载PDF
基于软时间窗的AGV配送路径规划研究
13
作者 夏正龙 刘莹莹 +3 位作者 韩德伟 杭津如 缪海鹏 韩秀虹 《河南师范大学学报(自然科学版)》 北大核心 2025年第6期66-73,I0010,共9页
针对传统遗传算法应用于汽车总装生产线物料配送环节存在搜索效率低、易陷入局部最优、实用性差等缺点,提出了一种基于改进双种群遗传-模拟退火混合算法(improved dual population genetic-simulated annealing hybrid algorithm,IDPGSA... 针对传统遗传算法应用于汽车总装生产线物料配送环节存在搜索效率低、易陷入局部最优、实用性差等缺点,提出了一种基于改进双种群遗传-模拟退火混合算法(improved dual population genetic-simulated annealing hybrid algorithm,IDPGSA)的自动导引车(automated guided vehicle,AGV)物料配送路径规划策略.首先该算法将初始种群划分为Ⅰ和Ⅱ两个种群分别进行寻优,以提高搜索效率;其次为了增加种群的多样性并避免过早收敛,对双种群分别引入顺序交叉与两点交叉两种交叉算子,irgibnnm与滑动变异两种变异算子;最后在Ⅰ种群中引入逆转进化操作来提升全局寻优能力,而在Ⅱ种群中融合模拟退火算法增加局部搜索能力.经过仿真验证,改进后的策略在降低配送成本和提高配送效率方面表现更好,对于汽车总装生产线的优化有一定借鉴意义. 展开更多
关键词 双种群 变异算子 混合算法 物料配送 逆转进化
在线阅读 下载PDF
基于改进遗传算法的工控软件安全分布式众测互联机制研究
14
作者 龚亮华 王启蒙 +1 位作者 訾立强 雷承霖 《自动化与仪表》 2025年第6期147-150,159,共5页
为了保证多种漏洞测评任务完成的时效性,研究基于改进遗传算法的工控软件安全分布式众测互联机制。由众测任务发布方发布众测任务,加密后传送至区块链内,改进遗传算法得到最优分配方案,将区块链内众测任务合理分配到各个执行者。执行者... 为了保证多种漏洞测评任务完成的时效性,研究基于改进遗传算法的工控软件安全分布式众测互联机制。由众测任务发布方发布众测任务,加密后传送至区块链内,改进遗传算法得到最优分配方案,将区块链内众测任务合理分配到各个执行者。执行者所输出测评报告加密后传送至区块链内,经区块链传输至任务发布方,完成工控软件安全分布式互联众测。结果显示,该机制可均匀合理地将多种安全众测任务分配给各个执行者,最大程度地降低整体安全众测时间代价,保证安全测评任务执行的时效性,同时可保证众测相关信息的隐私与安全性。 展开更多
关键词 改进遗传算法 工控软件 安全众测 变异算子 任务分配
在线阅读 下载PDF
基于改进人工鱼群算法的输电网规划方法
15
作者 杨乐 赵辛 +1 位作者 唐杰 吴倩 《信息技术》 2025年第4期147-153,160,共8页
针对输电网规划迭代次数高、求解时间长等问题,提出基于改进人工鱼群算法的输电网规划方法。将输电网扩建线路投资金额与输电网线路的费用最小作为目标函数,构建输电网规划数学模型;采用人工鱼算法,通过人工鱼在觅食、聚群及追尾的行径... 针对输电网规划迭代次数高、求解时间长等问题,提出基于改进人工鱼群算法的输电网规划方法。将输电网扩建线路投资金额与输电网线路的费用最小作为目标函数,构建输电网规划数学模型;采用人工鱼算法,通过人工鱼在觅食、聚群及追尾的行径中不断迭代更新人工鱼状态;采用可变视野和变异操作优化人工鱼群算法,获取最佳输电网规划结果。实验结果表明,该方法可实现输电网合理规划,迭代次数仅为10次,求解时间仅为6.1秒,在60次实验中均获得了最优解,并且规划方案达到A级以上,具备了良好的经济性和可持续发展性。 展开更多
关键词 输电网规划 改进人工鱼群算法 人工鱼 可变视野 变异操作
在线阅读 下载PDF
改进NSGA-Ⅱ算法求解带时间窗的车辆路径问题
16
作者 王江 李占强 +2 位作者 吴婷婷 王梓硕 陈雅文 《河北北方学院学报(自然科学版)》 2025年第5期16-23,42,共9页
针对NSGA-Ⅱ算法在求解带时间窗车辆路径问题时存在的种群多样性较差、算法性能不高、易陷入局部最优等问题,设计了一种改进的NSGA-Ⅱ算法。该算法采用动态拥挤度排序、改进精英保留、差分变异操作等策略,保留部分被淘汰的优秀个体以增... 针对NSGA-Ⅱ算法在求解带时间窗车辆路径问题时存在的种群多样性较差、算法性能不高、易陷入局部最优等问题,设计了一种改进的NSGA-Ⅱ算法。该算法采用动态拥挤度排序、改进精英保留、差分变异操作等策略,保留部分被淘汰的优秀个体以增加种群多样性,扩大算法前期搜索范围。在变异公式中引入自适应缩放因子和改进交叉变异概率以平衡算法局部和全局搜索能力,提高算法的收敛速度和精度。实验结果表明,该算法在配送总成本、行驶时间、程序运行时间等指标上分别优化了22.12%、14.70%、30.24%,同时客户满意度也提升了2.49%。 展开更多
关键词 改进NSGA-Ⅱ算法 动态拥挤度排序 改进精英保留 差分变异操作 自适应缩放因子 改进交叉变异概率
在线阅读 下载PDF
A NEW OPTIMIZATION ALGORITHM BASED ON THE PRINCIPLE OF EVOLUTION 被引量:2
17
作者 Yan Wei Zhu Zhaoda(Nanjing University of Aeronautics and Astronautics, Nanjing 210016) 《Journal of Electronics(China)》 1998年第3期248-253,共6页
A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential tra... A new genetic algorithm is proposed for the optimization problem of real-valued variable functions. A new robust and adaptive fitness scaling is presented by introducing the median of the population in exponential transformation. For float-point represented chromosomes, crossover and mutation operators are given. Convergence of the algorithm is proved. The performance is tested by two generally used functions. Hybrid algorithm which takes the BP algorithm as a mutation operator is used to train a neural network for image recognition. Experimental results show that the proposed algorithm is an efficient global optimization algorithm. 展开更多
关键词 GENETIC algorithm CROSSOVER and mutation operATORS Global optimization
在线阅读 下载PDF
GA and PSO culled hybrid technique for economic dispatch problem with prohibited operating zones 被引量:4
18
作者 SUDHAKARAN M. AJAY-D-VIMALRAJ P. PALANIVELU T.G. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期896-903,共8页
This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear c... This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB. 展开更多
关键词 Economic dispatch (ED) Genetic algorithm (GA) Particle swarm optimization (PSO) Hybrid GAPSO Prohibited operating zone CROSSOVER mutation Velocity
在线阅读 下载PDF
Adaptive immune-genetic algorithm for global optimization to multivariable function 被引量:9
19
作者 Dai Yongshou Li Yuanyuan +2 位作者 Wei Lei Wang Junling Zheng Deling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期655-660,共6页
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera... An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability. 展开更多
关键词 immune-genetic algorithm function optimization hyper-mutation density operator.
在线阅读 下载PDF
A REAL-VALUED GENETIC ALGORITHM FOR OPTIMIZATION PROBLEM WITH CONTINUOUS VARIABLES
20
作者 严卫 朱兆达 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1997年第1期4-8,共5页
A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover opera... A real valued genetic algorithm(RVGA) for the optimization problem with continuous variables is proposed. It is composed of a simple and general purpose dynamic scaled fitness and selection operator, crossover operator, mutation operators and adaptive probabilities for these operators. The algorithm is tested by two generally used functions and is used in training a neural network for image recognition. Experimental results show that the algorithm is an efficient global optimization algorithm. 展开更多
关键词 OPTIMIZATION neural networks genetic algorithm crossover operator and mutation operator
在线阅读 下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部