Naturally occurring yellow leaf mutants are an important resource for studying pigment content and biosynthesis,as well as related gene expression.In our ongoing cultivation of Rehmannia chingii H.L.Li,we found an off...Naturally occurring yellow leaf mutants are an important resource for studying pigment content and biosynthesis,as well as related gene expression.In our ongoing cultivation of Rehmannia chingii H.L.Li,we found an off-type yellow plant.The yellowing started with the new leaves and gradually spread downward until the entire plant exhibited a stable shade of yellow.We studied the differences in the chlorophyll and carotenoid content,carotenoid profile,and transcriptome of this yellow-leaf mutant(P2).Compared to the wild-type R.chingii plant(P1),P2 leaves had significantly lower chlorophyll and carotenoid content.LC-MS/MS analysis revealed that P2 had higher quantities of severalmetabolites in the carotenoid biosynthesis pathway.Transcriptome sequencing results showed that genes involved in porphyrin metabolism,carbon fixation,photosynthesis and antenna proteins,terpenoid backbone biosynthesis,and carotenoid biosynthesis were differentially expressed between P1 and P2.Large-scale expression differences were observed in the phytohormone and MAPK signaling pathways,as well as in 15 transcription factor families.We discuss possible mechanisms responsible for the yellowleaf color in P2.These preliminary data are valuable for further exploring the molecular mechanisms of leaf color formation and associated pathways.展开更多
CRISPR-Cas9 has emerged as a powerful tool for gene editing,and it has been widely used in plant functional genomics research and crop genetic breeding(Chen et al.2019).The target specificity of CRISPR-Cas9 relies on ...CRISPR-Cas9 has emerged as a powerful tool for gene editing,and it has been widely used in plant functional genomics research and crop genetic breeding(Chen et al.2019).The target specificity of CRISPR-Cas9 relies on the 20-base-pair single guide RNA(sgRNA),which makes creating plant-specific mutant libraries through large-scale synthesis of sgRNAs targeting multiple genes or even the whole genome relatively quick and straightforward.展开更多
Background:Innovative oral targeted therapies are warranted for patients with human epidermal growth factor receptor 2(HER2)-mutant non-small-cell lung cancer(NSCLC).Zongertinib is an oral,irreversible,HER2-selective ...Background:Innovative oral targeted therapies are warranted for patients with human epidermal growth factor receptor 2(HER2)-mutant non-small-cell lung cancer(NSCLC).Zongertinib is an oral,irreversible,HER2-selective tyrosine kinase inhibitor that has been shown to have efficacy in persons with advanced or metastatic solid tumors with HER2 alterations in a phase 1 study.展开更多
The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,a...The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.展开更多
Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-st...Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.展开更多
The emergence of antiretroviral resistance mutations represents a major threat to the achievement of national and global goals for the elimination of HIV-1 infection. The global strategy in 2019 in Cte d'Ivoire is...The emergence of antiretroviral resistance mutations represents a major threat to the achievement of national and global goals for the elimination of HIV-1 infection. The global strategy in 2019 in Cte d'Ivoire is a new national policy for the management of people living with HIV with the administration of dolutegravir (DTG)-based fixed-dose combination. The aim of our study was to evaluate HIV-1 resistance to antiretrovirals (ARVs) in infected adult subjects in Cte d’Ivoire in the context of a systematic switch to a DTG-based combination. Between February 2022 and October 2023, a cross-sectional survey with random sampling was conducted in 06 services caring for people living with HIV. A total of 139 participants were included in the study. Adults with a viral load ≥ 1000 copies/mL were tested for HIV-1 ARV resistance mutations. Molecular analyses were performed using protocol of ANRS-MIE (National Agency for Research on AIDS and emerging infectious diseases). The interpretation is performed by HIVGRAD (https://www.hiv-grade.de/cms/grade/). The frequencies of HIV-1 resistance to non-nucleotide reverse transcriptase inhibitors (NNRTIs), nucleotide reverse transcriptase inhibitors (NRTIs), integrase inhibitors (IINTs) and protease inhibitors (PIs) were 82%, 73%, 19% and 11% respectively. The main mutations observed in the different classes were K103N (45%), M184V (64%), E157Q (19%) and L10V/M46I/A71V/I54V (6%) respectively. This study reveals the emergence of resistance to DTG-based fixed-dose combinations, favored by high rates of resistance to NRTIs and NNRTIs. This finding underlines the need for enhanced viral load monitoring and HIV-1 genotyping tests to guide the choice of NRTIs for combination therapy. In addition, monitoring for mutations to second-generation NRTIs is essential, given the scale-up of DTG-based regimens currently underway in Cte d’Ivoire.展开更多
TP53 is a tumor suppressor gene that is mutated in most cancer types and has been extensively studied in cancer research.p53 plays a critical role in regulating the expression of target genes and is involved in key pr...TP53 is a tumor suppressor gene that is mutated in most cancer types and has been extensively studied in cancer research.p53 plays a critical role in regulating the expression of target genes and is involved in key processes such as apoptosis,cell cycle regulation,and genomic stability,earning it the title“guardian of the genome.”Numerous studies have demonstrated p53’s influence on and regulation of autophagy,ferroptosis,the tumor microenvironment,and cell metabolism,all of which contribute to tumor suppression.Alterations in p53,specifically mutant p53(mutp53),not only impair its tumor-suppressing functions but also enhance oncogenic characteristics.Recent data indicate that mutp53 is strongly associated with poor prognosis and advanced cancers,making it an ideal target for the development of novel cancer therapies.This review summarizes the post-translational modifications of p53,the mechanisms of mutp53 accumulation,and its gain-of-function,based on previous findings.Additionally,this review discusses its impact on metabolic homeostasis,ferroptosis,genomic instability,the tumor microenvironment,and cancer stem cells,and highlights recent advancements in mutp53 research.展开更多
基金funded by the Beijing Gardening andGreeningYouth InnovationTalent Support Program(kjcx202336)theKey R&D Project of theOpen Subject of the Beijing Key Laboratory for Greening Plant Breeding(YZZD202403).
文摘Naturally occurring yellow leaf mutants are an important resource for studying pigment content and biosynthesis,as well as related gene expression.In our ongoing cultivation of Rehmannia chingii H.L.Li,we found an off-type yellow plant.The yellowing started with the new leaves and gradually spread downward until the entire plant exhibited a stable shade of yellow.We studied the differences in the chlorophyll and carotenoid content,carotenoid profile,and transcriptome of this yellow-leaf mutant(P2).Compared to the wild-type R.chingii plant(P1),P2 leaves had significantly lower chlorophyll and carotenoid content.LC-MS/MS analysis revealed that P2 had higher quantities of severalmetabolites in the carotenoid biosynthesis pathway.Transcriptome sequencing results showed that genes involved in porphyrin metabolism,carbon fixation,photosynthesis and antenna proteins,terpenoid backbone biosynthesis,and carotenoid biosynthesis were differentially expressed between P1 and P2.Large-scale expression differences were observed in the phytohormone and MAPK signaling pathways,as well as in 15 transcription factor families.We discuss possible mechanisms responsible for the yellowleaf color in P2.These preliminary data are valuable for further exploring the molecular mechanisms of leaf color formation and associated pathways.
基金supported by the National Natural Science Foundation of China(32272670 and 31972986)the Key Research and Development Program of Shaanxi Province,China(2023-YBNY-059)。
文摘CRISPR-Cas9 has emerged as a powerful tool for gene editing,and it has been widely used in plant functional genomics research and crop genetic breeding(Chen et al.2019).The target specificity of CRISPR-Cas9 relies on the 20-base-pair single guide RNA(sgRNA),which makes creating plant-specific mutant libraries through large-scale synthesis of sgRNAs targeting multiple genes or even the whole genome relatively quick and straightforward.
基金Funded by Boehringer IngelheimBeamion LUNG-1 ClinicalTrials.gov number,NCT04886804.
文摘Background:Innovative oral targeted therapies are warranted for patients with human epidermal growth factor receptor 2(HER2)-mutant non-small-cell lung cancer(NSCLC).Zongertinib is an oral,irreversible,HER2-selective tyrosine kinase inhibitor that has been shown to have efficacy in persons with advanced or metastatic solid tumors with HER2 alterations in a phase 1 study.
基金the National Natural Science Foundation of China(Grant No.32372652)the Liaoning Provincial Science and Technology Project of‘Jiebangguashuai’(Grant No.2022JH1/10400016)the Shenyang Academician and Expert Workstation Project(Grant No.2022-15).
文摘The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.
基金the National Key R&D Program of China(Nos.2018YFD0901506,2018YFD0900305)the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)(No.2018 SDKJ0406-3)。
文摘Insertional mutation,phenotypic evaluation,and mutated gene cloning are widely used to clone genes from scratch.Exogenous genes can be integrated into the genome during non-homologous end joining(NHEJ)of the double-strand breaks of DNA,causing insertional mutation.The random insertional mutant library constructed using this method has become a method of forward genetics for gene cloning.However,the establishment of a random insertional mutant library requires a high transformation efficiency of exogenous genes.Many microalgal species show a low transformation efficiency,making constructing random insertional mutant libraries difficult.In this study,we established a highly efficient transformation method for constructing a random insertional mutant library of Nannochloropsis oceanica,and tentatively tried to isolate its genes to prove the feasibility of the method.A gene that may control the growth rate and cell size was identified.This method will facilitate the genetic studies of N.oceanica,which should also be a reference for other microalgal species.
文摘The emergence of antiretroviral resistance mutations represents a major threat to the achievement of national and global goals for the elimination of HIV-1 infection. The global strategy in 2019 in Cte d'Ivoire is a new national policy for the management of people living with HIV with the administration of dolutegravir (DTG)-based fixed-dose combination. The aim of our study was to evaluate HIV-1 resistance to antiretrovirals (ARVs) in infected adult subjects in Cte d’Ivoire in the context of a systematic switch to a DTG-based combination. Between February 2022 and October 2023, a cross-sectional survey with random sampling was conducted in 06 services caring for people living with HIV. A total of 139 participants were included in the study. Adults with a viral load ≥ 1000 copies/mL were tested for HIV-1 ARV resistance mutations. Molecular analyses were performed using protocol of ANRS-MIE (National Agency for Research on AIDS and emerging infectious diseases). The interpretation is performed by HIVGRAD (https://www.hiv-grade.de/cms/grade/). The frequencies of HIV-1 resistance to non-nucleotide reverse transcriptase inhibitors (NNRTIs), nucleotide reverse transcriptase inhibitors (NRTIs), integrase inhibitors (IINTs) and protease inhibitors (PIs) were 82%, 73%, 19% and 11% respectively. The main mutations observed in the different classes were K103N (45%), M184V (64%), E157Q (19%) and L10V/M46I/A71V/I54V (6%) respectively. This study reveals the emergence of resistance to DTG-based fixed-dose combinations, favored by high rates of resistance to NRTIs and NNRTIs. This finding underlines the need for enhanced viral load monitoring and HIV-1 genotyping tests to guide the choice of NRTIs for combination therapy. In addition, monitoring for mutations to second-generation NRTIs is essential, given the scale-up of DTG-based regimens currently underway in Cte d’Ivoire.
文摘TP53 is a tumor suppressor gene that is mutated in most cancer types and has been extensively studied in cancer research.p53 plays a critical role in regulating the expression of target genes and is involved in key processes such as apoptosis,cell cycle regulation,and genomic stability,earning it the title“guardian of the genome.”Numerous studies have demonstrated p53’s influence on and regulation of autophagy,ferroptosis,the tumor microenvironment,and cell metabolism,all of which contribute to tumor suppression.Alterations in p53,specifically mutant p53(mutp53),not only impair its tumor-suppressing functions but also enhance oncogenic characteristics.Recent data indicate that mutp53 is strongly associated with poor prognosis and advanced cancers,making it an ideal target for the development of novel cancer therapies.This review summarizes the post-translational modifications of p53,the mechanisms of mutp53 accumulation,and its gain-of-function,based on previous findings.Additionally,this review discusses its impact on metabolic homeostasis,ferroptosis,genomic instability,the tumor microenvironment,and cancer stem cells,and highlights recent advancements in mutp53 research.