期刊文献+
共找到151篇文章
< 1 2 8 >
每页显示 20 50 100
Dynamic load balancing for real-time multiview path tracing on multi-GPU architectures
1
作者 Erwan LERIA Markku MAKITALO +1 位作者 Julius IKKALA Pekka JÄÄSKELÄINEN 《虚拟现实与智能硬件(中英文)》 2025年第4期393-405,共13页
Stereoscopic and multiview rendering are used for virtual reality and the synthetic generation of light fields from three-dimensional scenes.Because rendering multiple views using ray tracing techniques is computation... Stereoscopic and multiview rendering are used for virtual reality and the synthetic generation of light fields from three-dimensional scenes.Because rendering multiple views using ray tracing techniques is computationally expensive,the utilization of multiprocessor machines is necessary to achieve real-time frame rates.In this study,we propose a dynamic load-balancing algorithm for real-time multiview path tracing on multi-compute device platforms.The proposed algorithm was adapted to heterogeneous hardware combinations and dynamic scenes in real time.We show that on a heterogeneous dual-GPU platform,our implementation reduces the rendering time by an average of approximately 30%–50%compared with that of a uniform workload distribution,depending on the scene and number of views. 展开更多
关键词 Virtual reality multiview Light field Heterogeneous computing
在线阅读 下载PDF
An Enhanced Multiview Transformer for Population Density Estimation Using Cellular Mobility Data in Smart City
2
作者 Yu Zhou Bosong Lin +1 位作者 Siqi Hu Dandan Yu 《Computers, Materials & Continua》 SCIE EI 2024年第4期161-182,共22页
This paper addresses the problem of predicting population density leveraging cellular station data.As wireless communication devices are commonly used,cellular station data has become integral for estimating populatio... This paper addresses the problem of predicting population density leveraging cellular station data.As wireless communication devices are commonly used,cellular station data has become integral for estimating population figures and studying their movement,thereby implying significant contributions to urban planning.However,existing research grapples with issues pertinent to preprocessing base station data and the modeling of population prediction.To address this,we propose methodologies for preprocessing cellular station data to eliminate any irregular or redundant data.The preprocessing reveals a distinct cyclical characteristic and high-frequency variation in population shift.Further,we devise a multi-view enhancement model grounded on the Transformer(MVformer),targeting the improvement of the accuracy of extended time-series population predictions.Comparative experiments,conducted on the above-mentioned population dataset using four alternate Transformer-based models,indicate that our proposedMVformer model enhances prediction accuracy by approximately 30%for both univariate and multivariate time-series prediction assignments.The performance of this model in tasks pertaining to population prediction exhibits commendable results. 展开更多
关键词 Population density estimation smart city TRANSFORMER multiview learning
在线阅读 下载PDF
Hypo-Driver: A Multiview Driver Fatigue and Distraction Level Detection System 被引量:2
3
作者 Qaisar Abbas Mostafa EAIbrahim +1 位作者 Shakir Khan Abdul Rauf Baig 《Computers, Materials & Continua》 SCIE EI 2022年第4期1999-2017,共19页
Traffic accidents are caused by driver fatigue or distraction in many cases.To prevent accidents,several low-cost hypovigilance(hypo-V)systems were developed in the past based on a multimodal-hybrid(physiological and ... Traffic accidents are caused by driver fatigue or distraction in many cases.To prevent accidents,several low-cost hypovigilance(hypo-V)systems were developed in the past based on a multimodal-hybrid(physiological and behavioral)feature set.Similarly in this paper,real-time driver inattention and fatigue(Hypo-Driver)detection system is proposed through multi-view cameras and biosignal sensors to extract hybrid features.The considered features are derived from non-intrusive sensors that are related to the changes in driving behavior and visual facial expressions.To get enhanced visual facial features in uncontrolled environment,three cameras are deployed on multiview points(0◦,45◦,and 90◦)of the drivers.To develop a Hypo-Driver system,the physiological signals(electroencephalography(EEG),electrocardiography(ECG),electro-myography(sEMG),and electrooculography(EOG))and behavioral information(PERCLOS70-80-90%,mouth aspect ratio(MAR),eye aspect ratio(EAR),blinking frequency(BF),head-titled ratio(HT-R))are collected and pre-processed,then followed by feature selection and fusion techniques.The driver behaviors are classified into five stages such as normal,fatigue,visual inattention,cognitive inattention,and drowsy.This improved hypo-Driver system utilized trained behavioral features by a convolutional neural network(CNNs),recurrent neural network and long short-term memory(RNN-LSTM)model is used to extract physiological features.After fusion of these features,the Hypo-Driver system is classified hypo-V into five stages based on trained layers and dropout-layer in the deep-residual neural network(DRNN)model.To test the performance of a hypo-Driver system,data from 20 drivers are acquired.The results of Hypo-Driver compared to state-of-theart methods are presented.Compared to the state-of-the-art Hypo-V system,on average,the Hypo-Driver system achieved a detection accuracy(AC)of 96.5%.The obtained results indicate that the Hypo-Driver system based on multimodal and multiview features outperforms other state-of-the-art driver Hypo-V systems by handling many anomalies. 展开更多
关键词 Internet of things(IoT) intelligent transportation sensors multiview points transfer learning convolutional neural network recurrent neural network residual neural network multimodal features
在线阅读 下载PDF
Action Recognition for Multiview Skeleton 3D Data Using NTURGB+D Dataset 被引量:1
4
作者 Rosepreet Kaur Bhogal V.Devendran 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2759-2772,共14页
Human activity recognition is a recent area of research for researchers.Activity recognition has many applications in smart homes to observe and track toddlers or oldsters for their safety,monitor indoor and outdoor a... Human activity recognition is a recent area of research for researchers.Activity recognition has many applications in smart homes to observe and track toddlers or oldsters for their safety,monitor indoor and outdoor activities,develop Tele immersion systems,or detect abnormal activity recognition.Three dimensions(3D)skeleton data is robust and somehow view-invariant.Due to this,it is one of the popular choices for human action recognition.This paper proposed using a transversal tree from 3D skeleton data to represent videos in a sequence.Further proposed two neural networks:convolutional neural network recurrent neural network_1(CNN_RNN_1),used to find the optimal features and convolutional neural network recurrent neural network network_2(CNN_RNN_2),used to classify actions.The deep neural network-based model proposed CNN_RNN_1 and CNN_RNN_2 that uses a convolutional neural network(CNN),Long short-term memory(LSTM)and Bidirectional Long shortterm memory(BiLSTM)layered.The systemefficiently achieves the desired accuracy over state-of-the-art models,i.e.,88.89%.The performance of the proposed model compared with the existing state-of-the-art models.The NTURGB+D dataset uses for analyzing experimental results.It is one of the large benchmark datasets for human activity recognition.Moreover,the comparison results show that the proposed model outperformed the state-ofthe-art models. 展开更多
关键词 ACTIVITY RECOGNITION multiview LSTM BiLSTM NTURGB+D
在线阅读 下载PDF
Wavelets and Continuous Wavelet Transform for Autostereoscopic Multiview Images
5
作者 Vladimir Saveljev 《Journal of Electrical Engineering》 2016年第1期19-23,共5页
Recently, the reference functions for the synthesis and analysis of the autostereoscopic multiview and integral images in three-dimensional displays were introduced. In the current paper, we propose the wavelets to an... Recently, the reference functions for the synthesis and analysis of the autostereoscopic multiview and integral images in three-dimensional displays were introduced. In the current paper, we propose the wavelets to analyze such images. The wavelets are built on these reference functions as on the scaling functions of the wavelet analysis. The continuous wavelet transform was successfully applied to the testing wireframe binary objects. The restored locations correspond to the structure of the testing wireframe binary objects. 展开更多
关键词 3D display autostereoscopic display integral imaging multiview image processing wavelets.
在线阅读 下载PDF
End-to-End Multiview Gesture Recognition for Autonomous Car Parking System
6
作者 Hassene Ben AMARA Fakhri KARRAY 《Instrumentation》 2019年第3期76-92,共17页
The use of hand gestures can be the most intuitive human-machine interaction medium.The early approaches for hand gesture recognition used device-based methods.These methods use mechanical or optical sensors attached ... The use of hand gestures can be the most intuitive human-machine interaction medium.The early approaches for hand gesture recognition used device-based methods.These methods use mechanical or optical sensors attached to a glove or markers,which hinder the natural human-machine communication.On the other hand,vision-based methods are less restrictive and allow for a more spontaneous communication without the need of an intermediary between human and machine.Therefore,vision gesture recognition has been a popular area of research for the past thirty years.Hand gesture recognition finds its application in many areas,particularly the automotive industry where advanced automotive human-machine interface(HMI)designers are using gesture recognition to improve driver and vehicle safety.However,technology advances go beyond active/passive safety and into convenience and comfort.In this context,one of America’s big three automakers has partnered with the Centre of Pattern Analysis and Machine Intelligence(CPAMI)at the University of Waterloo to investigate expanding their product segment through machine learning to provide an increased driver convenience and comfort with the particular application of hand gesture recognition for autonomous car parking.The present paper leverages the state-of-the-art deep learning and optimization techniques to develop a vision-based multiview dynamic hand gesture recognizer for a self-parking system.We propose a 3D-CNN gesture model architecture that we train on a publicly available hand gesture database.We apply transfer learning methods to fine-tune the pre-trained gesture model on custom-made data,which significantly improves the proposed system performance in a real world environment.We adapt the architecture of end-to-end solution to expand the state-of-the-art video classifier from a single image as input(fed by monocular camera)to a Multiview 360 feed,offered by a six cameras module.Finally,we optimize the proposed solution to work on a limited resource embedded platform(Nvidia Jetson TX2)that is used by automakers for vehicle-based features,without sacrificing the accuracy robustness and real time functionality of the system. 展开更多
关键词 Deep Learning Video Classification Dynamic Hand Gesture Recognition multiview Embedded Platform AUTOMOTIVE Vehicle Self-Parking
原文传递
Tensor Decomposition-assisted Multiview Subgroup Analysis
7
作者 Xun Zhao Ling Zhou +1 位作者 Weijia Zhang Huazhen Lin 《Acta Mathematica Sinica,English Series》 2025年第2期588-618,共31页
To learn the subgroup structure generated by multidimensional interaction, we propose a novel multiview subgroup integration technique based on tensor decomposition. Compared to the traditional subgroup analysis that ... To learn the subgroup structure generated by multidimensional interaction, we propose a novel multiview subgroup integration technique based on tensor decomposition. Compared to the traditional subgroup analysis that can only handle single-view heterogeneity, our proposed method achieves a greater level of homogeneity within the subgroups, leading to enhanced interpretability and predictive power. For computational readiness of the proposed method, we build an algorithm that incorporates pairwise shrinkage-encouraging penalties and ADMM techniques. Theoretically, we establish the asymptotic consistency and normality of the proposed estimators. Extensive simulation studies and real data analysis demonstrate that our proposal outperforms other methods in terms of prediction accuracy and grouping consistency. In addition, the analysis based on the proposed method indicates that intergenerational care significantly increases the risk of chronic diseases associated with diet and fatigue in all provinces while only reducing the risk of emotion-related chronic diseases in the eastern coastal and central regions of China. 展开更多
关键词 multiview subgroup analysis tensor decomposition data integration ADMM algorithm
原文传递
时空语义驱动的渐进多视角行为去偏置研究
8
作者 钟忺 陈亮 +4 位作者 刘文璇 叶舒 江奎 王正 林嘉文 《计算机工程》 北大核心 2025年第1期1-10,共10页
在实际应用中,单视角摄像头采集数据由于物体存在遮挡而失去对某些区域的可见性,因此结合多个视角下的数据进行行为分析对于维护社会稳定及民生安全至关重要。针对多视角行为识别中存在的偏置问题,即不同视角下空间语义不一致导致的视... 在实际应用中,单视角摄像头采集数据由于物体存在遮挡而失去对某些区域的可见性,因此结合多个视角下的数据进行行为分析对于维护社会稳定及民生安全至关重要。针对多视角行为识别中存在的偏置问题,即不同视角下空间语义不一致导致的视角间行为表征差异以及同一行为执行过程中的时序语义不一致导致的行为表征差异,提出一种渐进去偏置的多视角方法。首先,在多视角下的同一行为样本中以证据理论为引导,结合不同视角下的行为同构性进行视角间行为去偏置,优化不同视角下关注的行为特征权重,以获得更全面的无偏行为表示。其次,结合多粒度解耦策略,分析不同粒度对行为特征无偏表达的影响,准确分离行为相关和行为无关特征,以避免视角内行为无关信息扰乱行为表征导致的显著差异。最后,在时序维度上构建不同行为特征权重,增强同一视角内行为特征一致性,减弱同一行为的行为表征差异。在多个数据集上的实验结果验证了所提方法的有效性,在N-UCLA和NTU-RGB+D数据集上的跨视角准确率分别达到了97.4%和96.4%,并且所提方法在满足多视角下对行为识别进行准确分析应用需求的同时通过一种新的去偏置思路为多视角行为识别问题提供了一种有效的解决方案。 展开更多
关键词 多视角行为识别 渐进式去偏置 证据理论 解耦 多粒度
在线阅读 下载PDF
视图映射和循环一致性生成的不完整多视图聚类
9
作者 王英博 郭凯雪 《智能系统学报》 北大核心 2025年第2期316-328,共13页
传统聚类假设每个视图都完整,没有考虑数据损坏、设备故障导致的不完整视图情况。针对此问题,已有方法大多基于核和非负矩阵分解提出,没有明确补偿每个视图丢失的数据,学习的潜在表示也没有考虑聚类任务。为此设计视图映射和循环一致性... 传统聚类假设每个视图都完整,没有考虑数据损坏、设备故障导致的不完整视图情况。针对此问题,已有方法大多基于核和非负矩阵分解提出,没有明确补偿每个视图丢失的数据,学习的潜在表示也没有考虑聚类任务。为此设计视图映射和循环一致性生成的不完整多视图聚类(incomplete multi-view clustering generated by view mapping and cyclic consistency,MG_IMC),利用已有数据信息得到各视图的风格编码和共享潜在表示,并通过生成对抗网络生成缺失的数据,在完整数据集上利用加权自适应融合捕获更好的通用结构,并在深度嵌入聚类层完成聚类任务。使用KL散度(Kullback-Leibler divergence)联合训练模型,学习的公共表示有助于生成缺失的数据,而补全的数据进一步生成聚类友好的公共表示。实验表明,相比已有方法,该算法得到更好的聚类效果。 展开更多
关键词 数据挖掘 聚类 多视图学习 不完全多视图聚类 深度学习 自动编码器 生成对抗性网络 KL散度
在线阅读 下载PDF
RJAN:Region-based joint attention network for 3D shape recognition
10
作者 Yue Zhao Weizhi Nie +2 位作者 Jie Nie Yuyi Zhang Bo Wang 《CAAI Transactions on Intelligence Technology》 2025年第2期460-473,共14页
As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective... As an essential field of multimedia and computer vision,3D shape recognition has attracted much research attention in recent years.Multiview-based approaches have demonstrated their superiority in generating effective 3D shape representations.Typical methods usually extract the multiview global features and aggregate them together to generate 3D shape descriptors.However,there exist two disadvantages:First,the mainstream methods ignore the comprehensive exploration of local information in each view.Second,many approaches roughly aggregate multiview features by adding or concatenating them together.The information loss for some discriminative characteristics limits the representation effectiveness.To address these problems,a novel architecture named region-based joint attention network(RJAN)was proposed.Specifically,the authors first design a hierarchical local information exploration module for view descriptor extraction.The region-to-region and channel-to-channel relationships from different granularities can be comprehensively explored and utilised to provide more discriminative characteristics for view feature learning.Subsequently,a novel relation-aware view aggregation module is designed to aggregate the multiview features for shape descriptor generation,considering the view-to-view relationships.Extensive experiments were conducted on three public databases:ModelNet40,ModelNet10,and ShapeNetCore55.RJAN achieves state-of-the-art performance in the tasks of 3D shape classification and 3D shape retrieval,which demonstrates the effectiveness of RJAN.The code has been released on https://github.com/slurrpp/RJAN. 展开更多
关键词 3D shape recognition attention mechanism multiview
在线阅读 下载PDF
基于多视角信息的行人检测算法
11
作者 刘皓宇 孔鹏伟 +1 位作者 王耀力 常青 《计算机应用》 北大核心 2025年第7期2325-2332,共8页
针对现有的多视角行人检测算法中因目标遮挡严重以及未关注多视角之间关系而导致的错检和漏检等问题,提出一种基于MVDeTr(MultiView Detection with shadow Transformer)算法改进的多视角行人检测算法。首先,在特征提取阶段,设计一个视... 针对现有的多视角行人检测算法中因目标遮挡严重以及未关注多视角之间关系而导致的错检和漏检等问题,提出一种基于MVDeTr(MultiView Detection with shadow Transformer)算法改进的多视角行人检测算法。首先,在特征提取阶段,设计一个视角特征增强模块VEM(View Enhancement Module),通过关注不同视角之间的关系实现对重要视角的增强;其次,在将多视角信息引入单视角的过程中,加入高效多尺度注意力(EMA)模块建立短距离和长距离依赖关系,从而提升检测效果;最后,在原始基线算法Shadow Transformer模块的基础上,设计一种新的多视角信息处理模块EST(Efficient Shadow Transformer),在保持检测效果的基础上减少多视角中冗余信息的使用。实验结果表明,在Wildtrack数据集上与原始MVDeTr算法相比,所提算法的主要检测指标MODA(Multiple Object Detection Accuracy)提升了1.8个百分点,检测指标MODP(Multiple Object Detection Precision)提升了0.6个百分点,召回率提升了1.8个百分点。可见,所提算法能很好地应用于多视角行人检测任务。 展开更多
关键词 多视角 行人检测 MVDeTr 注意力机制 特征增强
在线阅读 下载PDF
基于空频协同的CNN-Transformer多器官分割网络
12
作者 王梦溪 雷涛 +3 位作者 姜由涛 刘乐 刘少庆 王营博 《智能系统学报》 北大核心 2025年第5期1266-1280,共15页
针对目前主流的医学多器官分割网络未能充分利用卷积神经网络(convolutional neural network,CNN)的局部细节提取优势以及Transformer的全局信息捕获潜力,并缺乏空频特征协同建模的问题,提出了一种基于空频协同的CNN-Transformer双分支... 针对目前主流的医学多器官分割网络未能充分利用卷积神经网络(convolutional neural network,CNN)的局部细节提取优势以及Transformer的全局信息捕获潜力,并缺乏空频特征协同建模的问题,提出了一种基于空频协同的CNN-Transformer双分支编解码网络。该网络在局部分支中设计了空频协同注意力,使网络从频域和空间域捕获到更为丰富的局部细节信息;在全局分支设计了多视图频域提取器,该模块通过频谱层和自注意力层联合建模,提高了模型的空频特征协同建模能力和泛化性能。此外,设计了局部与全局特征融合模块,有效整合了CNN分支的局部细节信息和Transformer分支的全局信息,解决了网络无法兼顾局部细节和全局感受野的难题。实验结果表明,该架构克服了医学图像中器官边界模糊导致误分割的问题,有效提升了多器官分割精度,同时计算成本更低,参数量更少。 展开更多
关键词 多器官分割 空频协同 多视图频域 注意力机制 CNN TRANSFORMER 协同注意力 局部−全局特征融合
在线阅读 下载PDF
A Survey on Multiview Video Synthesis and Editing 被引量:1
13
作者 Shaoping Lu Taijiang Mu Songhai Zhang 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2016年第6期678-695,共18页
Multiview video can provide more immersive perception than traditional single 2-D video. It enables both interactive free navigation applications as well as high-end autostereoscopic displays on which multiple users c... Multiview video can provide more immersive perception than traditional single 2-D video. It enables both interactive free navigation applications as well as high-end autostereoscopic displays on which multiple users can perceive genuine 3-D content without glasses. The multiview format also comprises much more visual information than classical 2-D or stereo 3-D content, which makes it possible to perform various interesting editing operations both on pixel-level and object-level. This survey provides a comprehensive review of existing multiview video synthesis and editing algorithms and applications. For each topic, the related technologies in classical 2-D image and video processing are reviewed. We then continue to the discussion of recent advanced techniques for multiview video virtual view synthesis and various interactive editing applications. Due to the ongoing progress on multiview video synthesis and editing, we can foresee more and more immersive 3-D video applications will appear in the future. 展开更多
关键词 multiview video view synthesis video editing color correction SURVEY
原文传递
A Multitask Multiview Neural Network for End-to-End Aspect-Based Sentiment Analysis 被引量:5
14
作者 Yong Bie Yan Yang 《Big Data Mining and Analytics》 EI 2021年第3期195-207,共13页
The aspect-based sentiment analysis(ABSA) consists of two subtasks—aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies... The aspect-based sentiment analysis(ABSA) consists of two subtasks—aspect term extraction and aspect sentiment prediction. Existing methods deal with both subtasks one by one in a pipeline manner, in which there lies some problems in performance and real application. This study investigates the end-to-end ABSA and proposes a novel multitask multiview network(MTMVN) architecture. Specifically, the architecture takes the unified ABSA as the main task with the two subtasks as auxiliary tasks. Meanwhile, the representation obtained from the branch network of the main task is regarded as the global view, whereas the representations of the two subtasks are considered two local views with different emphases. Through multitask learning, the main task can be facilitated by additional accurate aspect boundary information and sentiment polarity information. By enhancing the correlations between the views under the idea of multiview learning, the representation of the global view can be optimized to improve the overall performance of the model. The experimental results on three benchmark datasets show that the proposed method exceeds the existing pipeline methods and end-to-end methods, proving the superiority of our MTMVN architecture. 展开更多
关键词 deep learning multitask learning multiview learning natural language processing aspect-based sentiment analysis
原文传递
基于LSPIV的航道表面流场实时孪生方法
15
作者 田一博 刘振嘉 +3 位作者 梁锴 任伯浩 韩越 李明伟 《水运工程》 2025年第6期203-210,共8页
长江三峡—葛洲坝水利枢纽两坝间石牌弯道的河床地形复杂,流量变化巨大,表面碍航流态具有变化多,分布广的特点,对往来船只的通航造成了安全隐患。但现有的流场测量技术存在测量范围有限、受环境影响较大,实时性不足等问题,无法满足复杂... 长江三峡—葛洲坝水利枢纽两坝间石牌弯道的河床地形复杂,流量变化巨大,表面碍航流态具有变化多,分布广的特点,对往来船只的通航造成了安全隐患。但现有的流场测量技术存在测量范围有限、受环境影响较大,实时性不足等问题,无法满足复杂航道表面流场测量的需求。针对上述问题,进行了表面流场实时孪生方法研究,采用LSPIV技术结合多视角摄像头的方法,构建急弯航道环境下的表面流场实时孪生系统;并在石牌弯道水域进行现场对比测试,得到了表面水域的流场孪生数据。结果表明:该方法能够实时、准确地还原实际航道表面的水流状态,与无人机雷达测速设备测量值吻合度较好,为枢纽通航安全提供了技术支撑。 展开更多
关键词 流场测量 LSPIV 多视角摄像头 实时孪生
在线阅读 下载PDF
稀疏温度监测数据的多视角函数型修复方法
16
作者 马文娟 高海燕 边友迪 《河北环境工程学院学报》 2025年第5期59-67,共9页
在函数型数据分析框架下进行缺失数据插补方法研究,构建一种稀疏温度监测数据的多视角函数型修复方法(Multiview Functional Restoration Method,MFRM)。MFRM同时考虑温度曲线的时间、空间以及时空相关性三个方面,分别运用基于条件期望... 在函数型数据分析框架下进行缺失数据插补方法研究,构建一种稀疏温度监测数据的多视角函数型修复方法(Multiview Functional Restoration Method,MFRM)。MFRM同时考虑温度曲线的时间、空间以及时空相关性三个方面,分别运用基于条件期望的主成分分析法(PACE)、空间函数型数据的普通克里金法(OKFD)和软函数型矩阵填充法(SFI)三种典型方法处理不同视角的缺失值,并利用自加权集成学习算法动态赋权重计算得到最终插补值。实验结果表明,MFRM的插补性能相比于PACE、OKFD和SFI,均方根误差、平均绝对误差、归一化均方根误差分别降低了1.12%~48.14%、4.44%~50.55%、7.69%~50%。并以2021年黑龙江省、吉林省以及内蒙古自治区26个监测站点的温度数据为例,验证了MFRM的估算能力。 展开更多
关键词 函数型数据分析 缺失插补 多视角学习 稀疏温度数据
在线阅读 下载PDF
多模态方面级情感分析的多视图交互学习网络 被引量:3
17
作者 王旭阳 庞文倩 赵丽婕 《计算机工程与应用》 CSCD 北大核心 2024年第7期92-100,共9页
以往的多模态方面级情感分析方法只利用预训练模型的一般文本和图片表示,对方面和观点词相关性的识别不敏感,且不能动态获取图片信息对单词表示的贡献,因而不能充分识别多模态与方面之间的相关性。针对上述问题,提出一种多视图交互学习... 以往的多模态方面级情感分析方法只利用预训练模型的一般文本和图片表示,对方面和观点词相关性的识别不敏感,且不能动态获取图片信息对单词表示的贡献,因而不能充分识别多模态与方面之间的相关性。针对上述问题,提出一种多视图交互学习网络模型。将句子从上下文和句法两个视图上分别提取特征,以便在多模态交互时充分利用到文本的全局特征;对文本、图片和方面之间的关系进行建模,使模型实现多模态交互;同时融合不同模态的交互表示,动态获取视觉信息对文本中每个单词的贡献程度,充分提取模态与方面之间的相关性。最后通过全连接层和Softmax层获取情感分类结果。在两个数据集上进行实验,实验结果表明该模型能够有效增强多模态方面级情感分类的效果。 展开更多
关键词 多模态方面级情感分析 预训练模型 多视图学习 多模态交互 动态融合
在线阅读 下载PDF
全局线索和多级特征驱动的息肉分割
18
作者 简丽琼 李春生 +3 位作者 陈志莉 车进 白雪冰 高翔 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2024年第6期1205-1214,共10页
在结肠镜检查中,自动分割息肉是开发计算机辅助结肠镜检测和诊断系统的先决条件。息肉分割是一项非常具有挑战性的任务,因为息肉与周边组织具有很大的相似性以及息肉的大小形状变化很大。针对息肉与周围组织相似以及息肉多变的问题,提... 在结肠镜检查中,自动分割息肉是开发计算机辅助结肠镜检测和诊断系统的先决条件。息肉分割是一项非常具有挑战性的任务,因为息肉与周边组织具有很大的相似性以及息肉的大小形状变化很大。针对息肉与周围组织相似以及息肉多变的问题,提出基于全局线索定位和多视图特征融合的息肉分割方法。设计全局线索定位模块将全局定位信息传播到每个级别的特征图中,以显式的方式使每个级别的特征图都获得伪装特性息肉的位置信息;设计自我多视图特征融合模块,通过不同视图下的特征捕获不同视图之间的层次特征,更好地适应不同情况下的息肉分割场景。提出方法在5个数据集上的得分比对比算法提高的百分点分别为1.2、3.3、1.8、8.5和3.7,证明提出方法在学习能力和泛化能力上都达到了预期的效果。 展开更多
关键词 结肠镜 息肉分割 全局线索定位 自我多视图特征融合 伪装
在线阅读 下载PDF
基于划分序乘积空间的多尺度决策模型
19
作者 徐怡 张杰 《智能系统学报》 CSCD 北大核心 2024年第6期1528-1538,共11页
多尺度决策系统的知识获取仅考虑了条件属性和决策属性的多个尺度,并没有考虑条件属性存在多个视角的情况,划分序乘积空间作为一种新型粒计算模型,同时考虑了多层次和多视角。因此,使用划分序乘积空间对多尺度决策问题进行描述和求解,... 多尺度决策系统的知识获取仅考虑了条件属性和决策属性的多个尺度,并没有考虑条件属性存在多个视角的情况,划分序乘积空间作为一种新型粒计算模型,同时考虑了多层次和多视角。因此,使用划分序乘积空间对多尺度决策问题进行描述和求解,建立基于划分序乘积空间的多尺度决策模型——划分序多尺度决策系统。首先,提出基于划分序乘积空间的划分序多尺度决策系统,从多个视角对多尺度决策问题进行描述;其次,在划分序多尺度决策系统中,给出其解空间的2种不同格结构;然后,针对2种不同格结构分别给出2种最优问题求解层选择算法,从多个视角对多尺度决策问题进行求解;最后,通过实验验证了所提模型和算法的有效性。 展开更多
关键词 粒计算 粗糙集 多尺度决策系统 划分序乘积空间 多层次 多视角 格结构 最优问题求解层
在线阅读 下载PDF
基于混合阶相似性的多视图聚类:一个广义的视角 被引量:2
20
作者 陈曼笙 任骊安 +2 位作者 王昌栋 黄栋 赖剑煌 《计算机学报》 EI CAS CSCD 北大核心 2024年第7期1453-1468,共16页
多视图聚类已经被广泛研究,它能够采用可用的多源信息来实现更好的聚类性能.然而,大多数之前的工作仍存在两个不足:(1)它们通常关注多视图属性特征的场景,很少留意到多视图属性图数据;(2)它们主要尝试发现一致的结构或多个视图之间的关... 多视图聚类已经被广泛研究,它能够采用可用的多源信息来实现更好的聚类性能.然而,大多数之前的工作仍存在两个不足:(1)它们通常关注多视图属性特征的场景,很少留意到多视图属性图数据;(2)它们主要尝试发现一致的结构或多个视图之间的关系,而忽略了多视图观测之间潜在的高阶相关性。为了解决这些问题,我们从广义角度出发,提出了一种新颖的方法,称为混合阶相似性的多视图聚类(Multiview Clustering by Hybridorder Affinity,MCHA).它将结构图和多视图属性特征巧妙融合,同时考虑了低秩概率相似性图和混合阶的相关性.具体而言,我们通过图过滤策略构建了一组保留几何结构的视图特定的平滑表示.同时,我们将从平滑表示中学习得到的多视图概率相似性图堆叠成一个张量,并对该张量给予低秩属性的约束.这可以很好地恢复视图间更高阶的相关性.在八个基准数据集上的实验表明,我们所提出的MCHA方法具有最先进的有效性. 展开更多
关键词 多视图聚类 概率相似性图 低秩张量 高阶相关性
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部