With the development of ocean engineering, it is one of the most important factors which determine the structural safety, cost and suitable forms of engineerings to select the ocean environmental design criteria. Owin...With the development of ocean engineering, it is one of the most important factors which determine the structural safety, cost and suitable forms of engineerings to select the ocean environmental design criteria. Owing to the complexity , variation and randomness of ocean environmental conditions, the commonly used methods for determining design criteria cannot consider the joint occurring probabilities of several environmental factors ,therefore, lead to overestimate design criteria of them and result in an unnecessary overspend invest in engineering. On the basis of the measured and hindcasting data and the multi-demension joint probability theory, this paper presented the study of the joint loads of wind , wave and current on the offshore structures and its responsible joint probability level with the application of random simulation techniques, and presented the joint design criteria of environmental loads for the realistic design of engineerings.展开更多
Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods...Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.展开更多
Let {Xkl,…, Xkp, k≥ 1} be a p-dimensional standard (zero-means, unit-variances)non-stationary Gaussian vector sequence. In this work, the joint limit distribution of the maximaof {Xkl,…, Xkp, k 〉 1}, the incompl...Let {Xkl,…, Xkp, k≥ 1} be a p-dimensional standard (zero-means, unit-variances)non-stationary Gaussian vector sequence. In this work, the joint limit distribution of the maximaof {Xkl,…, Xkp, k 〉 1}, the incomplete maxima of those sequences subject to random failureand the partial sums of those sequences are obtained.展开更多
This paper proposes a method for simulation of non-stationary ground motion processes having the identical statistical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review ...This paper proposes a method for simulation of non-stationary ground motion processes having the identical statistical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simulation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the target power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is verified by simulation of one acceleration record in Landers earthquake.展开更多
This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review...This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simu-lation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the tar-get power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is veri-fied by simulation of one acceleration record in Landers earthquake.展开更多
This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the infl...This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.展开更多
A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation ...A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation is solved using finite-difference techniques. Theinjection flow of the exhaust hood is treated as a boundary condition of the main flow. Experimentsresults well agree with the solution of theoretical prediction. The model can, therefore, be used todesign this kind of Aaberg hood. Thirdly the important parameters affecting the performance ofAaberg exhaust hood are taken into account. In the mean time the connection of these parameters isdeduced by multivariate linear regression based on the experimental results. The work is usefulwhether in designing this kind of local ventilation Aaberg exhaust hood or in predicting the hood'swork performance.展开更多
A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary ...A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary multi-point seismic ground motions at different locations on the ground surface are generated for use in engineering applications. First,a modified iterative procedure is used to generate uniformly modulated non-stationary ground motion time histories which are compatible with the prescribed power spectrum. Then,ground motion time histories are modeled as a non-stationary stochastic process with amplitude and frequency modulation. The characteristic frequency and damping ratio of the Clough-Penzien acceleration spectrum are considered as a function of time in order to study the frequency time variation. Finally,two numerical examples are presented to validate the efficiency of the proposed method,and the results show that this method can be effectively applied to the dynamic seismic analysis of long and large scale structures.展开更多
针对现有纵向驾驶意图识别方法中存在识别准确度不高、鲁棒性较差问题,提出基于多元时间序列分类的纵向驾驶意图识别模型。该模型以时间序列注意原型网络(Time series attentional prototype network,TapNet)为基础,并采用残差神经网络(...针对现有纵向驾驶意图识别方法中存在识别准确度不高、鲁棒性较差问题,提出基于多元时间序列分类的纵向驾驶意图识别模型。该模型以时间序列注意原型网络(Time series attentional prototype network,TapNet)为基础,并采用残差神经网络(Residual Network,ResNet)与双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)作为主要网络结构,以加强模型获取特征信息的能力。此外,使用罗技G29驾驶模拟器搭建驾驶意图采集实验平台,并以10名驾驶人在该平台采集的驾驶行为数据作为实验数据集。最后,使用该数据集验证模型性能。实验结果表明,改进TapNet模型在纵向驾驶意图识别具有98.44%的准确率。同时,该模型的单次识别平均时间远小于1ms,在保证驾驶意图识别时效性的基础上,模型的识别准确率以及鲁棒性相较于其他方法均有所提升,能提高基于车联网交通系统的安全性。展开更多
A global optimum location algorithm called Variable Step-Size Generalized Simulated Annealing(VSGSA) was applied to treating the data obtained by using an array of ion-electrodes in solutions containing mixtures of Na...A global optimum location algorithm called Variable Step-Size Generalized Simulated Annealing(VSGSA) was applied to treating the data obtained by using an array of ion-electrodes in solutions containing mixtures of Na+, K+, Ca2+. Unlike traditional optimization algorithms such as simplex procedure, VSGSA can be used to determine the model parameters without any priori information about the analytical system under investigation and overcome the disadvantage of simplex method which might converge to local extrema depending on the starting positions. The algorithm was applied to po-tentiometric determination of ions in mixture solutions.展开更多
In engineering systems,uncertainties in input parameters can significantly influence the output responses.This paper proposes a model distance-based approach to perform global sensitivity analysis for quantifying the ...In engineering systems,uncertainties in input parameters can significantly influence the output responses.This paper proposes a model distance-based approach to perform global sensitivity analysis for quantifying the influence of input uncertainties on multiple responses in an engineering system.The sensitivity indices are determined by comparing a reference model that incorporates all system uncertainties,with an altered model,where specific uncertainties are constrained.The proposed framework employs probability distance measures such as Hellinger distance,Kullback-Leibler divergence,and I2 norm which are based on joint probability density functions.The study also demonstrates the equivalence between the l2 norm-based approach and Sobol's analysis in multivariate sensitivity context.The proposed methodology effectively manages correlated random variables,accommodates both Gaussian and non-Gaussian distributions,and allows for the grouping of input variables.Ilustrative examples consist of static analysis of a truss system and dynamic analysis of a frame subjected to seismic excitation.The sensitivity indices are estimated using brute-force Monte Carlo simulations.The relative ranking of these sensitivity indices can be utilized to identify the most and least significant variables contributing to the response uncertainty.The numerical results show a consistent ranking of input variables across different probability measures,indicating the robustness of proposed framework.展开更多
文摘With the development of ocean engineering, it is one of the most important factors which determine the structural safety, cost and suitable forms of engineerings to select the ocean environmental design criteria. Owing to the complexity , variation and randomness of ocean environmental conditions, the commonly used methods for determining design criteria cannot consider the joint occurring probabilities of several environmental factors ,therefore, lead to overestimate design criteria of them and result in an unnecessary overspend invest in engineering. On the basis of the measured and hindcasting data and the multi-demension joint probability theory, this paper presented the study of the joint loads of wind , wave and current on the offshore structures and its responsible joint probability level with the application of random simulation techniques, and presented the joint design criteria of environmental loads for the realistic design of engineerings.
基金National Natural Science Foundation of China(No.11575080)Hunan Provincial Natural Science Foundation of China(No.2022JJ30482)Hunan Provincial Innovation Foundation for Postgraduate(No.QL20220206).
文摘Small-scale measurements of the radon exhalation rate using the flow-through and closed-loop methods were conducted on the surface of a uranium tailing pond to better understand the differences between the two methods.An abnormal radon exhalation behavior was observed,leading to computational fluid dynamics(CFD)-based simulations in which dynamic radon migration in a porous medium and accumulation chamber was considered.Based on the in-situ experimental and numerical simulation results,variations in the radon exhalation rate subject to permeability,flow rate,and insertion depth were quantified and analyzed.The in-situ radon exhalation rates measured using the flow-through method were higher than those measured using the closed-loop method,which could be explained by the negative pressure difference between the inside and outside of the chamber during the measurements.The consistency of the variations in the radon exhalation rate between the experiments and simulations suggests the reliability of CFD-based techniques in obtaining the dynamic evolution of transient radon exhalation rates for diffusion and convection at the porous medium-air interface.The synergistic effects of the three factors(insertion depth,flow rate,and permeability)on the negative pressure difference and measured exhalation rate were quantified,and multivariate regression models were established,with positive correlations in most cases;the exhalation rate decreased with increasing insertion depth at a permeability of 1×10^(−11) m^(2).CFD-based simulations can provide theoretical guidance for improving the flow-through method and thus achieve accurate measurements.
基金Supported by the National Natural Science Foundation of China(11326175,71471090)the Zhejiang Natural Science Foundation of China(LQ14A010012)
文摘Let {Xkl,…, Xkp, k≥ 1} be a p-dimensional standard (zero-means, unit-variances)non-stationary Gaussian vector sequence. In this work, the joint limit distribution of the maximaof {Xkl,…, Xkp, k 〉 1}, the incomplete maxima of those sequences subject to random failureand the partial sums of those sequences are obtained.
基金National Natural Science Foundation of China (50378063) and Excellent Young Teachers Program of Ministry of Education.
文摘This paper proposes a method for simulation of non-stationary ground motion processes having the identical statistical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simulation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the target power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is verified by simulation of one acceleration record in Landers earthquake.
基金National Natural Science Foundation of China (50378063) and Excellent Young Teachers Program of Ministry of Education.
文摘This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simu-lation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the tar-get power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is veri-fied by simulation of one acceleration record in Landers earthquake.
基金supported by The Hong Kong Polytechnic University through the project RU3Ythe Research Grant Council through the project PolyU 5128/13E+1 种基金National Natural Science Foundation of China(Grant No.51778313)Cooperative Innovation Center of Engineering Construction and Safety in Shangdong Blue Economic Zone
文摘This study aims to extend the multivariate adaptive regression splines(MARS)-Monte Carlo simulation(MCS) method for reliability analysis of slopes in spatially variable soils. This approach is used to explore the influences of the multiscale spatial variability of soil properties on the probability of failure(P_f) of the slopes. In the proposed approach, the relationship between the factor of safety and the soil strength parameters characterized with spatial variability is approximated by the MARS, with the aid of Karhunen-Loeve expansion. MCS is subsequently performed on the established MARS model to evaluate Pf.Finally, a nominally homogeneous cohesive-frictional slope and a heterogeneous cohesive slope, which are both characterized with different spatial variabilities, are utilized to illustrate the proposed approach.Results showed that the proposed approach can estimate the P_f of the slopes efficiently in spatially variable soils with sufficient accuracy. Moreover, the approach is relatively robust to the influence of different statistics of soil properties, thereby making it an effective and practical tool for addressing slope reliability problems concerning time-consuming deterministic stability models with low levels of P_f.Furthermore, disregarding the multiscale spatial variability of soil properties can overestimate or underestimate the P_f. Although the difference is small in general, the multiscale spatial variability of the soil properties must still be considered in the reliability analysis of heterogeneous slopes, especially for those highly related to cost effective and accurate designs.
文摘A new local exhaust ventilation hood is presented. First, the test system inlaboratory room is established. Secondly a mathematical model is developed in terms of the stokesstream function, and the governing equation is solved using finite-difference techniques. Theinjection flow of the exhaust hood is treated as a boundary condition of the main flow. Experimentsresults well agree with the solution of theoretical prediction. The model can, therefore, be used todesign this kind of Aaberg hood. Thirdly the important parameters affecting the performance ofAaberg exhaust hood are taken into account. In the mean time the connection of these parameters isdeduced by multivariate linear regression based on the experimental results. The work is usefulwhether in designing this kind of local ventilation Aaberg exhaust hood or in predicting the hood'swork performance.
基金National Natural Science Foundation of China Under Grant No.50439010NSFC and Korea Science and Engineering Foundation Under Grant No.50811140341
文摘A spectral-representation-based algorithm is proposed to simulate non-stationary and stochastic processes with evolutionary power,according to a prescribed non-stationary cross-spectral density matrix. Non-stationary multi-point seismic ground motions at different locations on the ground surface are generated for use in engineering applications. First,a modified iterative procedure is used to generate uniformly modulated non-stationary ground motion time histories which are compatible with the prescribed power spectrum. Then,ground motion time histories are modeled as a non-stationary stochastic process with amplitude and frequency modulation. The characteristic frequency and damping ratio of the Clough-Penzien acceleration spectrum are considered as a function of time in order to study the frequency time variation. Finally,two numerical examples are presented to validate the efficiency of the proposed method,and the results show that this method can be effectively applied to the dynamic seismic analysis of long and large scale structures.
文摘针对现有纵向驾驶意图识别方法中存在识别准确度不高、鲁棒性较差问题,提出基于多元时间序列分类的纵向驾驶意图识别模型。该模型以时间序列注意原型网络(Time series attentional prototype network,TapNet)为基础,并采用残差神经网络(Residual Network,ResNet)与双向长短时记忆网络(Bi-directional Long Short-Term Memory,Bi-LSTM)作为主要网络结构,以加强模型获取特征信息的能力。此外,使用罗技G29驾驶模拟器搭建驾驶意图采集实验平台,并以10名驾驶人在该平台采集的驾驶行为数据作为实验数据集。最后,使用该数据集验证模型性能。实验结果表明,改进TapNet模型在纵向驾驶意图识别具有98.44%的准确率。同时,该模型的单次识别平均时间远小于1ms,在保证驾驶意图识别时效性的基础上,模型的识别准确率以及鲁棒性相较于其他方法均有所提升,能提高基于车联网交通系统的安全性。
基金Supported by the National Natural Science Foundation of China Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Academia Sinica
文摘A global optimum location algorithm called Variable Step-Size Generalized Simulated Annealing(VSGSA) was applied to treating the data obtained by using an array of ion-electrodes in solutions containing mixtures of Na+, K+, Ca2+. Unlike traditional optimization algorithms such as simplex procedure, VSGSA can be used to determine the model parameters without any priori information about the analytical system under investigation and overcome the disadvantage of simplex method which might converge to local extrema depending on the starting positions. The algorithm was applied to po-tentiometric determination of ions in mixture solutions.
文摘In engineering systems,uncertainties in input parameters can significantly influence the output responses.This paper proposes a model distance-based approach to perform global sensitivity analysis for quantifying the influence of input uncertainties on multiple responses in an engineering system.The sensitivity indices are determined by comparing a reference model that incorporates all system uncertainties,with an altered model,where specific uncertainties are constrained.The proposed framework employs probability distance measures such as Hellinger distance,Kullback-Leibler divergence,and I2 norm which are based on joint probability density functions.The study also demonstrates the equivalence between the l2 norm-based approach and Sobol's analysis in multivariate sensitivity context.The proposed methodology effectively manages correlated random variables,accommodates both Gaussian and non-Gaussian distributions,and allows for the grouping of input variables.Ilustrative examples consist of static analysis of a truss system and dynamic analysis of a frame subjected to seismic excitation.The sensitivity indices are estimated using brute-force Monte Carlo simulations.The relative ranking of these sensitivity indices can be utilized to identify the most and least significant variables contributing to the response uncertainty.The numerical results show a consistent ranking of input variables across different probability measures,indicating the robustness of proposed framework.