One of the major challenges that membrane manufacturers, commercial enterprises and the scientific community in the field of membrane-based filtration or reverse osmosis (RO) desalination have to deal with is system p...One of the major challenges that membrane manufacturers, commercial enterprises and the scientific community in the field of membrane-based filtration or reverse osmosis (RO) desalination have to deal with is system performance retardation due to membrane fouling. In this respect, the prediction of fouling or system performance in membrane-based systems is the key to determining the mid and long-term plant operating conditions and costs. Despite major research efforts in the field, effective methods for the estimation of fouling in RO desalination plants are still in infancy, for example, most of the existing methods, neither consider the characteristics of the membranes such as the spacer geometry, nor the efficiency and the day to day chemical cleanings. Furthermore, most studies focus on predicting a single fouling indicator, e.g., flux decline. Faced with the limits of mathematical or numerical approach, in this paper, machine learning methods based on Multivariate Temporal Convolutional Neural networks (MTCN), which take into account the membrane characteristics, feed water quality, RO operation data and management practice such as Cleaning In Place (CIP) will be considered to predict membrane fouling using measurable multiple indicators. The temporal convolution model offers one the capability to explore the temporal dependencies among a remarkably long historical period and has potential use for operational diagnostics, early warning and system optimal control. Data collected from a Desalination RO plant will <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">be</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> used to demonstrate the capabilities of the prediction system. The method achieves remarkable predictive accuracy (root mean square error) of 0.023, 0.012 and 0.007 for the relative differential pressure and permeate</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Total Dissolved solids (TDS) and the feed pressure, respectively.</span></span></span></span>展开更多
The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals...The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals,which may contain important characteristics related to emotional states.Aiming at the above defects,a spatiotemporal emotion recognition method based on a 3-dimensional(3 D)time-frequency domain feature matrix was proposed.Specifically,the extracted time-frequency domain EEG features are first expressed as a 3 D matrix format according to the actual position of the cerebral cortex.Then,the input 3 D matrix is processed successively by multivariate convolutional neural network(MVCNN)and long short-term memory(LSTM)to classify the emotional state.Spatiotemporal emotion recognition method is evaluated on the DEAP data set,and achieved accuracy of 87.58%and 88.50%on arousal and valence dimensions respectively in binary classification tasks,as well as obtained accuracy of 84.58%in four class classification tasks.The experimental results show that 3 D matrix representation can represent emotional information more reasonably than two-dimensional(2 D).In addition,MVCNN and LSTM can utilize the spatial information of the electrode channels and the temporal context information of the EEG signal respectively.展开更多
文摘One of the major challenges that membrane manufacturers, commercial enterprises and the scientific community in the field of membrane-based filtration or reverse osmosis (RO) desalination have to deal with is system performance retardation due to membrane fouling. In this respect, the prediction of fouling or system performance in membrane-based systems is the key to determining the mid and long-term plant operating conditions and costs. Despite major research efforts in the field, effective methods for the estimation of fouling in RO desalination plants are still in infancy, for example, most of the existing methods, neither consider the characteristics of the membranes such as the spacer geometry, nor the efficiency and the day to day chemical cleanings. Furthermore, most studies focus on predicting a single fouling indicator, e.g., flux decline. Faced with the limits of mathematical or numerical approach, in this paper, machine learning methods based on Multivariate Temporal Convolutional Neural networks (MTCN), which take into account the membrane characteristics, feed water quality, RO operation data and management practice such as Cleaning In Place (CIP) will be considered to predict membrane fouling using measurable multiple indicators. The temporal convolution model offers one the capability to explore the temporal dependencies among a remarkably long historical period and has potential use for operational diagnostics, early warning and system optimal control. Data collected from a Desalination RO plant will <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">be</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> used to demonstrate the capabilities of the prediction system. The method achieves remarkable predictive accuracy (root mean square error) of 0.023, 0.012 and 0.007 for the relative differential pressure and permeate</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> Total Dissolved solids (TDS) and the feed pressure, respectively.</span></span></span></span>
基金supported by the National Natural Science Foundation of China(61872126)the Key Scientific Research Project Plan of Colleges and Universities in Henan Province(19A520004)。
文摘The research of emotion recognition based on electroencephalogram(EEG)signals often ignores the related information between the brain electrode channels and the contextual emotional information existing in EEG signals,which may contain important characteristics related to emotional states.Aiming at the above defects,a spatiotemporal emotion recognition method based on a 3-dimensional(3 D)time-frequency domain feature matrix was proposed.Specifically,the extracted time-frequency domain EEG features are first expressed as a 3 D matrix format according to the actual position of the cerebral cortex.Then,the input 3 D matrix is processed successively by multivariate convolutional neural network(MVCNN)and long short-term memory(LSTM)to classify the emotional state.Spatiotemporal emotion recognition method is evaluated on the DEAP data set,and achieved accuracy of 87.58%and 88.50%on arousal and valence dimensions respectively in binary classification tasks,as well as obtained accuracy of 84.58%in four class classification tasks.The experimental results show that 3 D matrix representation can represent emotional information more reasonably than two-dimensional(2 D).In addition,MVCNN and LSTM can utilize the spatial information of the electrode channels and the temporal context information of the EEG signal respectively.