期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MultiJSQ:Direct joint segmentation and quantification of left ventricle with deep multitask-derived regression network
1
作者 Xiuquan Du Zheng Pei +3 位作者 Ying Liu Xinzhi Cao Lei Li Shuo Li 《CAAI Transactions on Intelligence Technology》 2025年第1期175-192,共18页
Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease.However,the manual calculation of these parameters is challenging due to the high va... Quantitative analysis of clinical function parameters from MRI images is crucial for diagnosing and assessing cardiovascular disease.However,the manual calculation of these parameters is challenging due to the high variability among patients and the time-consuming nature of the process.In this study,the authors introduce a framework named MultiJSQ,comprising the feature presentation network(FRN)and the indicator prediction network(IEN),which is designed for simultaneous joint segmentation and quantification.The FRN is tailored for representing global image features,facilitating the direct acquisition of left ventricle(LV)contour images through pixel classification.Additionally,the IEN incorporates specifically designed modules to extract relevant clinical indices.The authors’method considers the interdependence of different tasks,demonstrating the validity of these relationships and yielding favourable results.Through extensive experiments on cardiac MR images from 145 patients,MultiJSQ achieves impressive outcomes,with low mean absolute errors of 124 mm^(2),1.72 mm,and 1.21 mm for areas,dimensions,and regional wall thicknesses,respectively,along with a Dice metric score of 0.908.The experimental findings underscore the excellent performance of our framework in LV segmentation and quantification,highlighting its promising clinical application prospects. 展开更多
关键词 global image features joint segmentation and quantification left ventricle(LV) multitask-derived regression network
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部