期刊文献+
共找到276篇文章
< 1 2 14 >
每页显示 20 50 100
SEFormer:A Lightweight CNN-Transformer Based on Separable Multiscale Depthwise Convolution and Efficient Self-Attention for Rotating Machinery Fault Diagnosis 被引量:1
1
作者 Hongxing Wang Xilai Ju +1 位作者 Hua Zhu Huafeng Li 《Computers, Materials & Continua》 SCIE EI 2025年第1期1417-1437,共21页
Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained promine... Traditional data-driven fault diagnosis methods depend on expert experience to manually extract effective fault features of signals,which has certain limitations.Conversely,deep learning techniques have gained prominence as a central focus of research in the field of fault diagnosis by strong fault feature extraction ability and end-to-end fault diagnosis efficiency.Recently,utilizing the respective advantages of convolution neural network(CNN)and Transformer in local and global feature extraction,research on cooperating the two have demonstrated promise in the field of fault diagnosis.However,the cross-channel convolution mechanism in CNN and the self-attention calculations in Transformer contribute to excessive complexity in the cooperative model.This complexity results in high computational costs and limited industrial applicability.To tackle the above challenges,this paper proposes a lightweight CNN-Transformer named as SEFormer for rotating machinery fault diagnosis.First,a separable multiscale depthwise convolution block is designed to extract and integrate multiscale feature information from different channel dimensions of vibration signals.Then,an efficient self-attention block is developed to capture critical fine-grained features of the signal from a global perspective.Finally,experimental results on the planetary gearbox dataset and themotor roller bearing dataset prove that the proposed framework can balance the advantages of robustness,generalization and lightweight compared to recent state-of-the-art fault diagnosis models based on CNN and Transformer.This study presents a feasible strategy for developing a lightweight rotating machinery fault diagnosis framework aimed at economical deployment. 展开更多
关键词 CNN-Transformer separable multiscale depthwise convolution efficient self-attention fault diagnosis
在线阅读 下载PDF
A multiscale adaptive framework based on convolutional neural network:Application to fluid catalytic cracking product yield prediction 被引量:2
2
作者 Nan Liu Chun-Meng Zhu +1 位作者 Meng-Xuan Zhang Xing-Ying Lan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2849-2869,共21页
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro... Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications. 展开更多
关键词 Fluid catalytic cracking Product yield Data-driven modeling multiscale prediction Data decomposition convolution neural network
原文传递
Establishing and validating a spotted tongue recognition and extraction model based on multiscale convolutional neural network 被引量:10
3
作者 PENG Chengdong WANG Li +3 位作者 JIANG Dongmei YANG Nuo CHEN Renming DONG Changwu 《Digital Chinese Medicine》 2022年第1期49-58,共10页
Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligenc... Objective In tongue diagnosis,the location,color,and distribution of spots can be used to speculate on the viscera and severity of the heat evil.This work focuses on the image analysis method of artificial intelligence(AI)to study the spotted tongue recognition of traditional Chinese medicine(TCM).Methods A model of spotted tongue recognition and extraction is designed,which is based on the principle of image deep learning and instance segmentation.This model includes multiscale feature map generation,region proposal searching,and target region recognition.Firstly,deep convolution network is used to build multiscale low-and high-abstraction feature maps after which,target candidate box generation algorithm and selection strategy are used to select high-quality target candidate regions.Finally,classification network is used for classifying target regions and calculating target region pixels.As a result,the region segmentation of spotted tongue is obtained.Under non-standard illumination conditions,various tongue images were taken by mobile phones,and experiments were conducted.Results The spotted tongue recognition achieved an area under curve(AUC)of 92.40%,an accuracy of 84.30%with a sensitivity of 88.20%,a specificity of 94.19%,a recall of 88.20%,a regional pixel accuracy index pixel accuracy(PA)of 73.00%,a mean pixel accuracy(m PA)of73.00%,an intersection over union(Io U)of 60.00%,and a mean intersection over union(mIo U)of 56.00%.Conclusion The results of the study verify that the model is suitable for the application of the TCM tongue diagnosis system.Spotted tongue recognition via multiscale convolutional neural network(CNN)would help to improve spot classification and the accurate extraction of pixels of spot area as well as provide a practical method for intelligent tongue diagnosis of TCM. 展开更多
关键词 Spotted tongue recognition and extraction The feature of tongue Instance segmentation multiscale convolutional neural network(CNN) Tongue diagnosis system Artificial intelligence(AI)
在线阅读 下载PDF
Infrasound Event Classification Fusion Model Based on Multiscale SE-CNN and BiLSTM 被引量:1
4
作者 Hongru Li Xihai Li +3 位作者 Xiaofeng Tan Chao Niu Jihao Liu Tianyou Liu 《Applied Geophysics》 SCIE CSCD 2024年第3期579-592,620,共15页
The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning al... The classification of infrasound events has considerable importance in improving the capability to identify the types of natural disasters.The traditional infrasound classification mainly relies on machine learning algorithms after artificial feature extraction.However,guaranteeing the effectiveness of the extracted features is difficult.The current trend focuses on using a convolution neural network to automatically extract features for classification.This method can be used to extract signal spatial features automatically through a convolution kernel;however,infrasound signals contain not only spatial information but also temporal information when used as a time series.These extracted temporal features are also crucial.If only a convolution neural network is used,then the time dependence of the infrasound sequence will be missed.Using long short-term memory networks can compensate for the missing time-series features but induces spatial feature information loss of the infrasound signal.A multiscale squeeze excitation–convolution neural network–bidirectional long short-term memory network infrasound event classification fusion model is proposed in this study to address these problems.This model automatically extracted temporal and spatial features,adaptively selected features,and also realized the fusion of the two types of features.Experimental results showed that the classification accuracy of the model was more than 98%,thus verifying the effectiveness and superiority of the proposed model. 展开更多
关键词 infrasound classification channel attention convolution neural network bidirectional long short-term memory network multiscale feature fusion
在线阅读 下载PDF
Automatic Pavement Crack Detection Based on Octave Convolution Neural Network with Hierarchical Feature Learning 被引量:1
5
作者 Minggang Xu Chong Li +1 位作者 Ying Chen Wu Wei 《Journal of Beijing Institute of Technology》 EI CAS 2024年第5期422-435,共14页
Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine ... Automatic pavement crack detection plays an important role in ensuring road safety.In images of cracks,information about the cracks can be conveyed through high-frequency and low-fre-quency signals that focus on fine details and global structures,respectively.The output features obtained from different convolutional layers can be combined to represent information about both high-frequency and low-frequency signals.In this paper,we propose an encoder-decoder framework called octave hierarchical network(Octave-H),which is based on the U-Network(U-Net)architec-ture and utilizes an octave convolutional neural network and a hierarchical feature learning module for performing crack detection.The proposed octave convolution is capable of extracting multi-fre-quency feature maps,capturing both fine details and global cracks.We propose a hierarchical feature learning module that merges multi-frequency-scale feature maps with different levels(high and low)of octave convolutional layers.To verify the superiority of the proposed Octave-H,we employed the CrackForest dataset(CFD)and AigleRN databases to evaluate this method.The experimental results demonstrate that Octave-H outperforms other algorithms with satisfactory performance. 展开更多
关键词 automated pavement crack detection octave convolutional network hierarchical feature multiscale MULTIFREQUENCY
在线阅读 下载PDF
Convolutional Neural Network Based on Spatial Pyramid for Image Classification 被引量:2
6
作者 Gaihua Wang Meng Lu +2 位作者 Tao Li Guoliang Yuan Wenzhou Liu 《Journal of Beijing Institute of Technology》 EI CAS 2018年第4期630-636,共7页
A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an orig... A novel convolutional neural network based on spatial pyramid for image classification is proposed.The network exploits image features with spatial pyramid representation.First,it extracts global features from an original image,and then different layers of grids are utilized to extract feature maps from different convolutional layers.Inspired by the spatial pyramid,the new network contains two parts,one of which is just like a standard convolutional neural network,composing of alternating convolutions and subsampling layers.But those convolution layers would be averagely pooled by the grid way to obtain feature maps,and then concatenated into a feature vector individually.Finally,those vectors are sequentially concatenated into a total feature vector as the last feature to the fully connection layer.This generated feature vector derives benefits from the classic and previous convolution layer,while the size of the grid adjusting the weight of the feature maps improves the recognition efficiency of the network.Experimental results demonstrate that this model improves the accuracy and applicability compared with the traditional model. 展开更多
关键词 convolutional neural network multiscale feature extraction image classification
在线阅读 下载PDF
Feature Fusion Multi_XMNet Convolution Neural Network for Clothing Image Classification 被引量:2
7
作者 ZHOU Honglei PENG Zhifei +1 位作者 TAO Ran ZHANG Lu 《Journal of Donghua University(English Edition)》 CAS 2021年第6期519-526,共8页
Faced with the massive amount of online shopping clothing images,how to classify them quickly and accurately is a challenging task in image classification.In this paper,we propose a novel method,named Multi_XMNet,to s... Faced with the massive amount of online shopping clothing images,how to classify them quickly and accurately is a challenging task in image classification.In this paper,we propose a novel method,named Multi_XMNet,to solve the clothing images classification problem.The proposed method mainly consists of two convolution neural network(CNN)branches.One branch extracts multiscale features from the whole expressional image by Multi_X which is designed by improving the Xception network,while the other extracts attention mechanism features from the whole expressional image by MobileNetV3-small network.Both multiscale and attention mechanism features are aggregated before making classification.Additionally,in the training stage,global average pooling(GAP),convolutional layers,and softmax classifiers are used instead of the fully connected layer to classify the final features,which speed up model training and alleviate the problem of overfitting caused by too many parameters.Experimental comparisons are made in the public DeepFashion dataset.The experimental results show that the classification accuracy of this method is 95.38%,which is better than InceptionV3,Xception and InceptionV3_Xception by 5.58%,3.32%,and 2.22%,respectively.The proposed Multi_XMNet image classification model can help enterprises and researchers in the field of clothing e-commerce to automaticly,efficiently and accurately classify massive clothing images. 展开更多
关键词 feature extraction feature fusion multiscale feature convolution neural network(CNN) clothing image classification
在线阅读 下载PDF
Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based onMulti-Scale and Multi Feature Convolution Neural Network 被引量:1
8
作者 Wen Long Bin Zhu +3 位作者 Huaizheng Li Yan Zhu Zhiqiang Chen Gang Cheng 《Energy Engineering》 EI 2023年第5期1253-1269,共17页
There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capaci... There is instability in the distributed energy storage cloud group end region on the power grid side.In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components showa continuous and stable charging and discharging state,a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed.Firstly,a voltage stability analysis model based onmulti-scale and multi feature convolution neural network is constructed,and the multi-scale and multi feature convolution neural network is optimized based on Self-OrganizingMaps(SOM)algorithm to analyze the voltage stability of the cloud group end region of distributed energy storage on the grid side under the framework of credibility.According to the optimal scheduling objectives and network size,the distributed robust optimal configuration control model is solved under the framework of coordinated optimal scheduling at multiple time scales;Finally,the time series characteristics of regional power grid load and distributed generation are analyzed.According to the regional hierarchical time-sharing configuration model of“cloud”,“group”and“end”layer,the grid side distributed energy storage cloud group end regional hierarchical time-sharing configuration algorithm is realized.The experimental results show that after applying this algorithm,the best grid side distributed energy storage configuration scheme can be determined,and the stability of grid side distributed energy storage cloud group end region layered timesharing configuration can be improved. 展开更多
关键词 multiscale and multi feature convolution neural network distributed energy storage at grid side cloud group end region layered time-sharing configuration algorithm
在线阅读 下载PDF
Multidimensional attention and multiscale upsampling for semantic segmentation
9
作者 LU Zhongda ZHANG Chunda +1 位作者 WANG Lijing XU Fengxia 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期68-78,共11页
Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as ... Semantic segmentation is for pixel-level classification tasks,and contextual information has an important impact on the performance of segmentation.In order to capture richer contextual information,we adopt ResNet as the backbone network and designs an encoder-decoder architecture based on multidimensional attention(MDA)module and multiscale upsampling(MSU)module.The MDA module calculates the attention matrices of the three dimensions to capture the dependency of each position,and adaptively captures the image features.The MSU module adopts parallel branches to capture the multiscale features of the images,and multiscale feature aggregation can enhance contextual information.A series of experiments demonstrate the validity of the model on Cityscapes and Camvid datasets. 展开更多
关键词 semantic segmentation attention mechanism multiscale feature convolutional neural network(CNN) residual network(ResNet)
在线阅读 下载PDF
动态特征聚合与多层次协同的无人机红外目标实例分割 被引量:2
10
作者 何自芬 王启刚 +3 位作者 张印辉 黄滢 彭伟 陈光晨 《红外与激光工程》 北大核心 2025年第8期246-258,共13页
针对无人机红外成像中因距离较远导致的图像轮廓模糊及目标尺度变化致使分割精度下降的问题,文中提出动态特征聚合与多层次协同的无人机红外目标实例分割模型(Dynamic feature aggregation and multi-level collaboration,DFMCNet)。首... 针对无人机红外成像中因距离较远导致的图像轮廓模糊及目标尺度变化致使分割精度下降的问题,文中提出动态特征聚合与多层次协同的无人机红外目标实例分割模型(Dynamic feature aggregation and multi-level collaboration,DFMCNet)。首先,设计区域特征自适应卷积模块(Spatial attention dynamic convolution,SADConv),采用动态卷积核和注意力机制,有效缓解特征图降维引发的细节丢失,抑制背景噪声干扰;其次,构建特征感知重组上采样模块(Feature sensing recombination upsampling module,FRUM),利用并行化可学习权重实现特征重组,在恢复特征图分辨率时保留空间特征并增强空间结构信息关注;最后,引入多尺度上下文聚合模块(Multi-scale context aggregation feature extraction module,MSFE),通过跨层级特征融合捕获多尺度上下文信息,提升模型对尺寸差异目标的泛化性。在红外航拍交通数据集Aerial-Mancar上的实验表明,DFMCNet的mAP50精度为78.4%较基准模型提升9.7%,mAP50-95精度为51.1%提升5.6%,与YOLOv12n-seg相比mAP50提高7.2%,验证了其在无人机红外场景下实现红外目标精确分割的有效性。 展开更多
关键词 无人机红外 动态卷积核 特征重组 多尺度聚合
原文传递
基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型 被引量:1
11
作者 陈锦妮 田谷丰 +4 位作者 李云红 朱耀麟 陈鑫 门玉乐 魏小双 《光谱学与光谱分析》 北大核心 2025年第3期678-684,共7页
羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一... 羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一种非破坏性、可进行建模操作的快速测量方法。针对传统的建模方法通常无法学习出通用的近红外光谱波段特征,导致泛化能力弱,且羊绒羊毛纤维的近红外光谱波段特征相似,难以区分的问题,本文提出一种基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型。采集了羊绒羊毛样品的近红外光谱波段数据共1170个进行验证,近红外光谱波段数据范围是1300~2500 nm。利用两个并行卷积神经网络来提取近红外光谱波段的特征,采用原始近红外光谱波段数据和降维近红外光谱波段数据同时输入的方式,并利用多尺度特征提取模块进一步提取中间具有贡献力的近红外光谱波段特征,利用路径交流模块用于两路近红外光谱波段特征的信息交流,最后利用类级别融合得到羊绒羊毛纤维预测结果。在实验过程中,将采集的80%近红外光谱波段数据用于模型训练,20%近红外光谱波段数据用于模型测试。模型测试集的平均预测准确率为94.45%,与传统算法中的随机森林、SVM、1D-CNN等算法相比较分别提升了7.33%、5.22%、2.96%,并进行消融实验对所提模型的结构进一步验证。实验结果表明,本文提出的双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型可实现羊绒羊毛纤维的快速无损预测,为近红外光谱羊绒羊毛纤维预测提供了新的思路。 展开更多
关键词 羊绒羊毛 近红外光谱 深度学习 双路多尺度卷积神经网络
在线阅读 下载PDF
基于样本迭代优化策略的密集连接多尺度土地覆盖语义分割 被引量:1
12
作者 郑宗生 高萌 +3 位作者 周文睆 王政翰 霍志俊 张月维 《自然资源遥感》 北大核心 2025年第2期11-18,共8页
针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-... 针对分割结果小尺度地物遗漏、连续地物缺乏完整性问题,提出密集连接多尺度语义分割模型(densely connected multi-scale semantic segmentation network, DMS-Net),实现土地覆盖分割。通过多尺度密集连接空洞空间卷积金字塔池化(multi-scale dense connected atrous spatial convolution pyramid pooling module, MDCA)和条形池化(spatial pyramid pooling, SP)提取多尺度和空间连续性地物;利用特征增强双注意力并联模块(position paralleling channel attention module, PPCA)衡量特征权重,实现高效表达;采用浅层特征级联模块(cascade low-level feature fusion, CLFF)捕捉被忽略的浅层特征,进一步补充细节。实验结果表明:DMS-Net模型在迭代扩充数据集上的总体精度(overall accuracy, OA)达到89.97%,平均交并比(mean intersection over union, mIoU)达到75.59%,高于传统机器学习方法及U-Net, PSPNet, Deeplabv3+等深度学习模型。分割结果显示,地物结构完整且边缘分割明晰,在实现多尺度的土地覆盖遥感信息提取分析中具有较好的实用价值。 展开更多
关键词 深度学习 全卷积神经网络 多尺度 语义分割 土地覆盖
在线阅读 下载PDF
基于改进SSD算法的地铁场景小行人目标检测 被引量:1
13
作者 张秀再 邱野 沈涛 《计算机研究与发展》 北大核心 2025年第2期397-407,共11页
在地铁场景中,小行人目标由于分辨率低,包含特征信息较少,现阶段目标检测器对此类目标的检测仍具有挑战性.SSD目标检测算法利用金字塔网络的多尺度检测头,能一定程度提高行人目标检测性能,但将其应用于地铁等复杂环境中实现小行人目标... 在地铁场景中,小行人目标由于分辨率低,包含特征信息较少,现阶段目标检测器对此类目标的检测仍具有挑战性.SSD目标检测算法利用金字塔网络的多尺度检测头,能一定程度提高行人目标检测性能,但将其应用于地铁等复杂环境中实现小行人目标检测仍具有一定局限性.针对上述问题,提出一种改进SSD算法以加强地铁场景中小行人目标检测效果.通过构建地铁场景行人目标数据集,标注相应标签,同时进行数据预处理操作;在特征提取网络中加入金字塔特征加强模块,将多分支残差单元、亚像素卷积和特征金字塔相结合获得图像多尺度、多感受野融合特征;利用上下文信息融合模块将图像低层特征与上下文特征相融合,生成扩展特征层用于检测小行人目标;设计一种基于Anchor-free的动态正负样本分配策略,为小行人目标生成最优正样本.实验结果表明:提出的改进SSD算法能有效提高地铁场景小行人目标检测性能,对遮挡严重的小行人目标检测,效果提升更为明显. 展开更多
关键词 小行人目标检测 SSD算法 注意力机制 亚像素卷积 多尺度特征融合
在线阅读 下载PDF
基于超图神经网络的多尺度信息传播预测模型
14
作者 赵敬华 张柱 +1 位作者 吕锡婷 林慧丹 《计算机应用》 北大核心 2025年第11期3529-3539,共11页
针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,... 针对现有多尺度信息传播预测模型忽略了级联传播的动态性,以及独立进行微观信息预测时性能有待提高的问题,提出基于超图神经网络的多尺度信息传播预测模型(MIDHGNN)。首先,使用图卷积网络(GCN)提取社交网络图中蕴含的用户社交关系特征,使用超图神经网络(HGNN)提取传播级联图中蕴含的用户全局偏好特征,并融合这2类特征进行微观信息传播预测;其次,利用门控循环单元(GRU)连续预测传播用户,直至虚拟用户;再次,将每次预测所得用户总数作为级联的最终规模,完成宏观信息传播预测;最后,在模型中嵌入强化学习(RL)框架,采用策略梯度方法优化参数,提升宏观信息传播预测性能。在微观信息传播预测方面,相较于次优模型,MIDHGNN在Twitter、Douban、Android数据集上的Hits@k指标分别平均提升12.01%、11.64%、9.74%,mAP@k指标分别平均提升31.31%、14.85%、13.24%;在宏观预测方面,MIDHGNN在这3个数据集上的均方对数误差(MSLE)指标分别最少降低8.10%、12.61%、3.24%,各项指标均显著优于对比模型,验证了它的有效性。 展开更多
关键词 信息传播预测 图卷积网络 超图神经网络 强化学习 多尺度
在线阅读 下载PDF
融合多尺度特征的高效网片缺陷检测算法
15
作者 何钢 姚远 +2 位作者 韩征彤 邹华涛 王田田 《计算机工程与应用》 北大核心 2025年第11期316-324,共9页
针对人工目视排查大型旋转过滤设备网片缺陷时存在的效率低下,缺陷与背景之间边界模糊及网孔中的小水珠产生反光现象等问题,提出了一个基于多维特征融合的高效网片缺陷检测算法。引入了泊松图像增强技术,实现了缺陷目标与正常背景区域... 针对人工目视排查大型旋转过滤设备网片缺陷时存在的效率低下,缺陷与背景之间边界模糊及网孔中的小水珠产生反光现象等问题,提出了一个基于多维特征融合的高效网片缺陷检测算法。引入了泊松图像增强技术,实现了缺陷目标与正常背景区域的平滑融合,增加了小样本缺陷数量的同时解决了缺陷数量分布不均匀的问题。在YOLOv8中融入轻量多维卷积改进的C2fLWDC(C2flightweight multi-dimensional convolution)模块及加权多特征增强模块,既增强了网络对缺陷特征的提取又实现了各级特征的高效融合,提升了对多尺度缺陷样本的表征能力。采用EIOU(efficient intersection over union)定位损失函数,加速了对缺陷目标的准确定位。网片数据集检测结果表明,改进后的算法mAP(mean average precision)达到92%,相较于原始模型提升了16.8个百分点,能很好地完成缺陷目标的检测任务。 展开更多
关键词 网片缺陷 YOLOv8 轻量多维卷积 特征融合 多尺度
在线阅读 下载PDF
基于增强特征融合的轻量级人体姿态估计网络
16
作者 施昕昕 张昊亮 《电子测量技术》 北大核心 2025年第2期189-198,共10页
为了提高轻量化人体姿态估计网络对不同阶段特征图的信息提取和特征融合能力和关键点热力图与分类特征图的后处理能力,提出了一种基于多阶段多层级特征融合的人体姿态估计网络。首先设计了多层级特征融合模块,以提高神经网络模型对特征... 为了提高轻量化人体姿态估计网络对不同阶段特征图的信息提取和特征融合能力和关键点热力图与分类特征图的后处理能力,提出了一种基于多阶段多层级特征融合的人体姿态估计网络。首先设计了多层级特征融合模块,以提高神经网络模型对特征图的信息提取和归纳总结能力;接着设计了结合特征融合模块设计了特征融合分支,以达到保留模型不同阶段的信息不会随长期卷积运算而丢失的效果;最后对模型输出的关键点分类图进行后处理操作,对分类部分使用分类损失增强模块进行进一步增强,使其能够更好地专注于关键点分类任务,以提高模型输出的准确性。在CrowdPose数据集进行性能测试,本文算法和LitePose算法在XS结构下的AP值分别为50.7%和48.4%;在S结构下,AP值分别为59.1%和58.3%。在MS COCO val2017数据集进行性能测试,本文算法和LitePose算法在XS结构下的AP值分别为41.9%和40.6%;在S结构下,AP值分别为57.0%和56.8%。实验结果表明,本文算法提出的多层级特征融合模块和高分辨率融合分支以及后处理操作对人体姿态估计网络检测性能提升具有正向作用。 展开更多
关键词 人体姿态估计 轻量级网络 多尺度特征融合 深度可分离卷积
原文传递
融合多尺度局部与全局表示的膝骨关节炎分类
17
作者 张清华 付美玲 靳朋仁 《闽南师范大学学报(自然科学版)》 2025年第2期1-15,共15页
针对膝关节X光图像分析中卷积神经网络(convolutional neural network,CNN)难以捕捉全局依赖关系,而图卷积网络(graph convolutional network,GCN)无法准确刻画局部细节的问题,提出渐进式融合多尺度局部与全局表示的CNN-GCN模型。首先利... 针对膝关节X光图像分析中卷积神经网络(convolutional neural network,CNN)难以捕捉全局依赖关系,而图卷积网络(graph convolutional network,GCN)无法准确刻画局部细节的问题,提出渐进式融合多尺度局部与全局表示的CNN-GCN模型。首先利用CNN提取局部病灶特征,并基于设计的线性缩放稀疏图构造方法将其转换为图结构;随后通过GCN进行全局建模,并引入通道重排和分组图卷积策略,逐步补充CNN的多尺度浅层特征,以增强局部与全局表示的互补性;最后通过实验验证了该模型的有效性和潜在应用价值。 展开更多
关键词 膝骨关节炎 卷积神经网络 图卷积网络 多尺度特征 图像分类
在线阅读 下载PDF
基于自监督学习的医学影像异常检测 被引量:2
18
作者 王楠 林绍辉 +4 位作者 齐福霖 陈玉珑 李珂 沈云航 马利庄 《计算机辅助设计与图形学学报》 北大核心 2025年第3期474-483,共10页
自监督学习(SSL)可以很好地捕捉关于不同概念的通用知识,有利于各种下游任务.针对自监督学习方法没有充分利用医学图像的多模态特征等问题,提出一种考虑医学图像多模态互补信息的自监督学习方法——SLeM.该方法首先将单个模态的图像均... 自监督学习(SSL)可以很好地捕捉关于不同概念的通用知识,有利于各种下游任务.针对自监督学习方法没有充分利用医学图像的多模态特征等问题,提出一种考虑医学图像多模态互补信息的自监督学习方法——SLeM.该方法首先将单个模态的图像均匀地划分为4个块,使用这些块随机组合构建多模态图像,不同的多模态图像被分配不同的标签,使得多模态特征可以通过分类任务来学习;为了提取不同大小肿瘤的特征,在学习到的多模态特征后加入上下文融合块;通过简单的微调将学到的特征转移到下游的多模态医学图像分割任务中.在公开数据集BraTS 2019和CHAOS上与JiGen,Taleb以及Supervoxel等具有代表性的多模态方法对比及消融实验结果表明,所提方法在整个肿瘤区域的分割准确度提升了2.03个百分点,在肿瘤核心区域的分割准确度提升了3.92个百分点,在肿瘤增强区域的分割准确度提升了1.75个百分点,并在视觉方面有较好的效果,明显优于其他方法. 展开更多
关键词 自监督学习 多模态融合 医学图像分割 特征提取 多尺度卷积
在线阅读 下载PDF
基于级联MCNN-MMLP双残差网络的短期负荷预测 被引量:1
19
作者 余凯峰 吐松江·卡日 +2 位作者 张紫薇 马小晶 王志刚 《电力系统保护与控制》 北大核心 2025年第2期151-162,共12页
为了解决负荷特性复杂导致负荷预测精度低的问题,提出了一种GWO-VMD和级联MCNN-MMLP双残差网络的短期负荷预测模型。首先,利用由灰狼算法(grey wolf optimize,GWO)优化的变分模态分解(variational mode decomposition,VMD)对原始负荷数... 为了解决负荷特性复杂导致负荷预测精度低的问题,提出了一种GWO-VMD和级联MCNN-MMLP双残差网络的短期负荷预测模型。首先,利用由灰狼算法(grey wolf optimize,GWO)优化的变分模态分解(variational mode decomposition,VMD)对原始负荷数据进行处理,降低原始负荷数据的复杂程度。其次,使用多尺度卷积神经网络(multiscale convolutional neural networks,MCNN)和多层感知机(multi-layer perception,MLP)结合的双残差神经网络对各个模态进行迁移学习训练和预测,并在MLP网络中引入多头注意力机制弥补网络信息瓶颈问题。最后,再次使用MCNN-MMLP双残差模型对初步预测的误差进行预测并校正初值,从而进一步提升预测精确度。通过对实际负荷数据进行分析,本模型的均方误差为5.024(MW)^(2)、均方根误差为2.241 MW、平均绝对百分比误差为0.160%,决定系数为0.996,各性能指标均优于其他传统及智能负荷预测方法。 展开更多
关键词 负荷预测 多尺度卷积神经网络 双残差神经网络 多头注意力机制 迁移学习
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断 被引量:1
20
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部