期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Parseval Frame Wavelet Multipliers in L^2(R^d) 被引量:3
1
作者 Zhongyan LI Xianliang SHI 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2012年第6期949-960,共12页
Let A be a d x d real expansive matrix. An A-dilation Parseval frame wavelet is a function φ E n2 (Rd), such that the set {|det A|n/2φ(Ant -l) :n ∈ Z, l∈ Zd} forms a Parseval frame for L2 (Rd). A measurab... Let A be a d x d real expansive matrix. An A-dilation Parseval frame wavelet is a function φ E n2 (Rd), such that the set {|det A|n/2φ(Ant -l) :n ∈ Z, l∈ Zd} forms a Parseval frame for L2 (Rd). A measurable function f is called an A-dilation Parseval frame wavelet multiplier if the inverse Fourier transform of fφ is an A-dilation Parseval frame wavelet whenever φ is an A-dilation Parseval frame wavelet, where φ denotes the Fourier transform of φ. In this paper, the authors completely characterize all A-dilation Parseval frame wavelet multipliers for any integral expansive matrix A with | det(A)|= 2. As an application, the path-connectivity of the set of all A-dilation Parseval frame wavelets with a frame MRA in L2(Rd) is discussed. 展开更多
关键词 Parseval frame wavelet Wavelet multiplier Frame multiresolutionanalysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部