期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Continuous-Time Channel Prediction Based on Tensor Neural Ordinary Differential Equation
1
作者 Mingyao Cui Hao Jiang +2 位作者 Yuhao Chen Yang Du Linglong Dai 《China Communications》 SCIE CSCD 2024年第1期163-174,共12页
Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channe... Channel prediction is critical to address the channel aging issue in mobile scenarios.Existing channel prediction techniques are mainly designed for discrete channel prediction,which can only predict the future channel in a fixed time slot per frame,while the other intra-frame channels are usually recovered by interpolation.However,these approaches suffer from a serious interpolation loss,especially for mobile millimeter-wave communications.To solve this challenging problem,we propose a tensor neural ordinary differential equation(TN-ODE)based continuous-time channel prediction scheme to realize the direct prediction of intra-frame channels.Specifically,inspired by the recently developed continuous mapping model named neural ODE in the field of machine learning,we first utilize the neural ODE model to predict future continuous-time channels.To improve the channel prediction accuracy and reduce computational complexity,we then propose the TN-ODE scheme to learn the structural characteristics of the high-dimensional channel by low-dimensional learnable transform.Simulation results show that the proposed scheme is able to achieve higher intra-frame channel prediction accuracy than existing schemes. 展开更多
关键词 channel prediction massive multipleinput-multiple-output millimeter-wave communications ordinary differential equation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部