Two phenomena of similar objects with different spectra and different objects with similar spectrum often result in the difficulty of separation and identification of all types of geographical objects only using spect...Two phenomena of similar objects with different spectra and different objects with similar spectrum often result in the difficulty of separation and identification of all types of geographical objects only using spectral information. Therefore, there is a need to incorporate spatial structural and spatial association properties of the surfaces of objects into image processing to improve the accuracy of classification of remotely sensed imagery. In the current article, a new method is proposed on the basis of the principle of multiple-point statistics for combining spectral information and spatial information for image classification. The method was validated by applying to a case study on road extraction based on Landsat TM taken over the Chinese Yellow River delta on August 8, 1999. The classification results have shown that this new method provides overall better results than the traditional methods such as maximum likelihood classifier (MLC).展开更多
Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to...Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.展开更多
Understanding the quantum critical phenomena is one of the most important and challenging tasks in condensed matter physics and the two-impurity Anderson model(TIAM) is a good starting point for this exploration. To t...Understanding the quantum critical phenomena is one of the most important and challenging tasks in condensed matter physics and the two-impurity Anderson model(TIAM) is a good starting point for this exploration. To this end,we employ the algebraic equation of motion approach to calculate the TIAM and analytically obtain the explicit singleparticle impurity Green function under the soft cut-off approximation(SCA). This approach effectively incorporates the impurity spacing as an intrinsic parameter. By solving the pole equations of the Green function, we have, for the first time, qualitatively calculated the spectral weight functions of the corresponding low-energy excitations. We find that when the impurity spacing is less than one lattice distance, the dynamic Rudermann–Kittel–Kasuya–Yosida(RKKY) interaction effectively enters, resulting in a rapid increase in the spectral weights of the RKKY phase, which ultimately surpass those of the Kondo phase;while the spectral weights of the Kondo phase are strongly suppressed. From the perspective of spectral weights, we further confirm the existence of a crossover from the Kondo phase to the RKKY phase in the TIAM. Based on these results, the reasons for the phenomenon of the Kondo resonance splitting are also discussed.展开更多
The pore structural characteristics have been the key to the studies on the mechanisms of fluids flow in porous media. With the development of experimental technology, the modern high-resolution equipments are capable...The pore structural characteristics have been the key to the studies on the mechanisms of fluids flow in porous media. With the development of experimental technology, the modern high-resolution equipments are capable of capturing pore structure images with a resolution of microns. But so far only 3D volume data of millimeter-scale rock samples can be obtained losslessly. It is necessary to explore the way of virtually reconstructing larger volume digital samples of porous media with the representative structural characteristics of the pore space. This paper proposes a reconstruction method of porous media using the structural characteristics captured by the data templates of multiple-point geostatistics. In this method, the probability of each structural characteristic of a pore space is acquired first, and then these characteristics are reproduced according to the probabilities to present the real structural characteristics in the reconstructed images. Our experimental results have shown that: (i) the deviation of LBM computed permeability respectively on the virtually reconstructed sandstone and the original sample is less than 1.2%; (ii) the reconstructed sandstone and the original sample have similar structural characteristics demonstrated by the variogram curves.展开更多
Stochastic simulation is an essential method for modeling complex geological structures in geosciences.Evaluating the uncertainty of the realizations of stochastic simulations can better describe real phenomena.Howeve...Stochastic simulation is an essential method for modeling complex geological structures in geosciences.Evaluating the uncertainty of the realizations of stochastic simulations can better describe real phenomena.However,uncertainty evaluation of stochastic simulation methods remains a challenge due to the limited data from geological surveys and the uncertainty in reliability estimation with stochastic simulation models.In addition,understanding the sensitivity of the parameters in stochastic simulation models is invaluable when exploring the parameters with a higher influence on the uncertainty associated with predictions generated from stochastic simulation.To facilitate uncertainty evaluation in stochastic simulation methods,we use the circular treemap as an interactive workflow to explore prediction uncertainty in and the parameter sensitivity of multiple-point geostatistical(MPS)stochastic simulation methods.In this work,we present a novel visualization framework for assessing the uncertainty in MPS stochastic simulation methods and exploring the parameter sensitivity of the MPS methods.We present a new indicator to integrate multiple metrics that characterize geospatial features and visualize these metrics to assist domain experts in making decisions.Parallel coordinates-scatter matrix plots and multi-dimensional scaling(MDS)plots are used to analyze the parametric sensitivity of MPS stochastic simulation methods.The realizations and parameters of two MPS stochastic simulation methods are used to test the applicability of the proposed visualization workflow and the visualization methods.The results demonstrate that our workflow and the visualization methods can assist experts infinding the model with less uncertainty and improve the efficiency of parameter adjustment using different MPS stochastic simulation methods.展开更多
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
Multiple-point statistics(MPS)is a useful approach to reconstruct three-dimensional models in the macroscopic or microscopic field.Extracting spatial features for three-dimensional reconstruction from two-dimensional ...Multiple-point statistics(MPS)is a useful approach to reconstruct three-dimensional models in the macroscopic or microscopic field.Extracting spatial features for three-dimensional reconstruction from two-dimensional training images(TIs),and characterizing non-stationary features with directional ductility are two key issues in MPS simulation.This study presents a step-wise MPS-based three-dimensional structures reconstruction algorithm with the sequential process and hierarchical strategy based on two-dimensional images.An extension method is proposed to construct three-dimensional TIs.With a sequential simulation process,an initial guess at the coarsest scale is simulated,in which hierarchical strategy is used according to the characteristics of TIs.To obtain a more refined realization,an expectation-maximization like iterative process with global optimization is implemented.A concrete example of chondrite micro-structure simulation,in which one scanning electron microscopy(SEM)image of the Heyetang meteorite is used as TI,shows that the presented algorithm can simulate complex non-stationary structures.展开更多
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease.Mounting evidence has shown that magnetic resonance(MR)technique has high accuracy in the quantitative a...BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease.Mounting evidence has shown that magnetic resonance(MR)technique has high accuracy in the quantitative analysis of fatty liver,and is suitable for monitoring the therapeutic effect on fatty liver.However,many packaging methods and postprocessing functions have puzzled radiologists in clinical applications.Therefore,selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging.AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver.METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver,following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol.Studies were retrieved from PubMed,Embase,and Cochrane Library databases,and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria.The Reference Citation Analysis database(https://www.referencecitationanalysis.com)was used to analyze citation of articles which were included in this review.RESULTS Forty studies were included for spectroscopy,two-point Dixon imaging,and multiple-point Dixon imaging comparing liver biopsy to other imaging methods.The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed.CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.展开更多
Soft pneumatic actuators have been widely used for implementing sophisticated and dexterous movements,due to numerous fascinating features compared with their rigid counterparts.Relatively speaking,modeling and analys...Soft pneumatic actuators have been widely used for implementing sophisticated and dexterous movements,due to numerous fascinating features compared with their rigid counterparts.Relatively speaking,modeling and analysis of an entire soft pneumatic actuator considering contact interaction between two adjacent air chambers is extremely rare,which is exactly what we are particularly interested in.Therefore,in order to establish an accurate mechanical model and analyze the overall configuration and stress distribution for the soft pneumatic actuator with large deflection,we consider the contact interaction of soft materials rather than hard materials,to produce an effective enhanced model for soft contact of a large deformable pneumatic actuator.In this article,a multiple-point contact approach is developed to circumvent the mutual penetration problem between adjacent air chambers of the soft actuator that occurs with the single-point contact approach employed in linear elastic rigid materials.In contrast to the previous simplified rod-based model that did not focus on contact interaction which was adopted to clarify the entire deformation of the actuator,the present model not only elaborates nonlinear large deformation and overall configuration variations,but also accurately delineates stress distribution law inside the chamber structure and the stress concentration phenomenon.By means of a corresponding static experiment,a comparison of the simulation results with experimental data validates the effectiveness and accuracy of this model employing a multiple-point contact approach.Excellent simulation of the actual bending deformation of the soft actuator is obtained,while mutual penetration is successfully circumvented,whereas the model with single-point contact cannot achieve those goals.Finally,as compared with the rod-based model,the results obtained using the proposed model are more consistent with experimental data,and simulation precision is improved.展开更多
Based on the algebraic equation of motion(AEOM)approach,we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit.The related ...Based on the algebraic equation of motion(AEOM)approach,we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit.The related spectral function satisfies the sum rule and shows that there is a well-known three-peak structure at zero temperature.In the low energy limit,we obtain the analytical formula of the Kondo temperature that is the same as the exact solution in form except for a prefactor.We also show that the shape of the Kondo resonance is the Lorentzian form and the corresponding weight is proportional to the spin-flip correlation function.展开更多
An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then agg...An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.展开更多
Purpose:This study aimed to examine the reliability and validity of load-velocity(L-V)relationship variables obtained through the 2-point method using different load combinations and velocity variables.Methods:Twenty ...Purpose:This study aimed to examine the reliability and validity of load-velocity(L-V)relationship variables obtained through the 2-point method using different load combinations and velocity variables.Methods:Twenty men performed 2 identical sessions consisting of 2 countermovement jumps against 4 external loads(20 kg,40 kg,60 kg,and80 kg)and a heavy squat against a load linked to a mean velocity(MV)of 0.55 m/s(load_(0.55)).The L-V relationship variables(load-axis intercept(L_(0)),velocity-axis intercept(v_(0)),and area under the L-V relationship line(A_(line)))were obtained using 3 velocity variables(MV,mean propulsive velocity(MPV),and peak velocity)by the multiple-point method including(20-40-60-80-load_(0.55))and excluding(20-40-60-80)the heavy squat,as well as from their respective 2-point methods(20-load_(0.55)and 20-80).Results:The L-V relationship variables were obtained with an acceptable reliability(coefncient of variation(CV)≤7.30%;intra-class correlation coefficient>0.63).The reliability of L_(0)and v_(0)was comparable for both methods(CV_(ratio)(calculated as higher value/lower value):1.11-1.12),but the multiple-point method provided Al_(ine)with a greater reliability(CV_(ratio)=1.26).The use of a heavy squat provided the L-V relationship variables with a comparable or higher reliability than the use of a heavy countermovement jump load(CV_(ratio):1.06-1.19).The peak velocity provided the load-velocity relationship variables with the greatest reliability(CV_(ratio):1.15-1.86)followed by the MV(CV_(ratio):1.07-1.18),and finally the MPV.The 2-point methods only revealed an acceptable validity for the MV and MPV(effect size≤0.19;Pearson s product-moment correlation coefficient≥0.96;Lin's concordance correlation coefficient≥0.94).Conclusion:The 2-point method obtained from a heavy squat load and MV or MPV is a quick,safe,and reliable procedure to evaluate the lower-body maximal neuromuscular capacities through the L-V relationship.展开更多
Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that...Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.展开更多
For new submarine pipeline maintenance lifting equipment,a specialized analysis model is constructed in this study.A pipeline can be divided into the lifted portion and the touch-down portion that lies on the seabed,a...For new submarine pipeline maintenance lifting equipment,a specialized analysis model is constructed in this study.A pipeline can be divided into the lifted portion and the touch-down portion that lies on the seabed,and each of these portions can be analyzed separately by converting the continuity conditions at the touch-down points to boundary conditions.The typical two-point sequence secant iterative technique is used to obtain the unknown lifted length and determine pipeline lifting confgurations.The BVP4C module in MATLAB software is used to solve this multiple-point boundary value problem issued from frst-order diferential equations.Also,the triple-point lifting mode of truncated maintenance and the two-point lifting mode of online maintenance are discussed.When the lifted heights at truss positions are shown,the lifting deformation,lifting forces,bending moment distribution,and axial force distribution can be analyzed using a dedicated analysis program.Numerical results can then be used to design a lifting strategy to protect the pipeline.展开更多
The purpose of this paper is to overcome the limitations of the traditional cranial defects restoration technique and better satisfy the aesthetic and comfort demands of different patients. An arithmetic profile curve...The purpose of this paper is to overcome the limitations of the traditional cranial defects restoration technique and better satisfy the aesthetic and comfort demands of different patients. An arithmetic profile curve blending technique was used based on a well-proportioned points cloud data obtained by analyzing computer tomography (CT) images of the patients. This technique uses reverse engineering technique to reconstruct a model of the defective cranium, taking all the characteristics of the protruding cranium into consideration to check the form and appropriateness of the restoration and to adjust the surface in real time to obtain the ideal shape. Then, the model is transferred to a multiple-point forming (MPF) pressure machine to produce a titanium alloy restoration model. The system has greater flexibility, shorter production cycles, and lower cost through the use of digital production technology, guarantees the quality of the cranial defects restoration model, reduces the surgical risks, and alleviates the patients’ pain. In addition, an improved contour curved bridge algorithm technique is used to repair any cranium defects on the contour curve to make the contour more complete and closed.展开更多
A new and easy-to-fabricate strain sensor has been developed,based on fiber Bragg grating(FBG)technology embedded into a thermoplastic polyurethane filament using a 3-dimensional(3D)printer.Taking advantage of the fle...A new and easy-to-fabricate strain sensor has been developed,based on fiber Bragg grating(FBG)technology embedded into a thermoplastic polyurethane filament using a 3-dimensional(3D)printer.Taking advantage of the flexibility and elastic properties of the thermoplastic polyurethane material,the embedding of the FBG provides durable protection with enhanced flexibility and sensitivity,as compared to the use of a bare FBG.Results of an evaluation of its performance have shown that the FBG sensors embedded in this way can be applied effectively in the measurement of strain,with an average wavelength responsivity of 0.0135 nm/cm of displacement for tensile strain and -0.0142 nm/cm for compressive strain,both showing a linearity value of up to 99%.Furthermore,such an embedded FBG-based strain sensor has a sensitivity of~1.74 times greater than that of a bare FBG used for strain measurement and is well protected and suitable for in-the-field use.It is also observed that the thermoplastic polyurethane based(TPU-based)FBG strain sensor carries a sensitivity value of~2.05 times higher than that of the polylactic acid based(PLA-based)FBG strain sensor proving that TPU material can be made as the material of choice as a“sensing”pad for the FBG.展开更多
基金supported by the National Natural Science Foundation of China (No. 40671136)the National High Technology Research and Development Program of China (Nos.2006AA06Z115, 2006AA120106)
文摘Two phenomena of similar objects with different spectra and different objects with similar spectrum often result in the difficulty of separation and identification of all types of geographical objects only using spectral information. Therefore, there is a need to incorporate spatial structural and spatial association properties of the surfaces of objects into image processing to improve the accuracy of classification of remotely sensed imagery. In the current article, a new method is proposed on the basis of the principle of multiple-point statistics for combining spectral information and spatial information for image classification. The method was validated by applying to a case study on road extraction based on Landsat TM taken over the Chinese Yellow River delta on August 8, 1999. The classification results have shown that this new method provides overall better results than the traditional methods such as maximum likelihood classifier (MLC).
基金Supported by the China National Science and Technology Major Project(2016ZX05015001-001,2016ZX05033-003-002)
文摘Based on the analysis of the high-order compatibility optimization method proposed by predecessors, a new training image optimization method based on data event repetition probability is proposed. The basic idea is to extract the data event contained in the condition data and calculate the number of repetitions of the extracted data events and their repetition probability in the training image to obtain two statistical indicators, unmatched ratio and repeated probability variance of data events. The two statistical indicators are used to characterize the diversity and stability of the sedimentary model in the training image and evaluate the matching of the geological volume spatial structure contained in data of the well block to be modeled. The unmatched ratio reflects the completeness of geological model in training image, which is the first choice index. The repeated probability variance reflects the stationarity index of geological model of each training image, and is an auxiliary index. Then, we can integrate the above two indexes to achieve the optimization of training image. Multiple sets of theoretical model tests show that the training image with small variance and low no-matching ratio is the optimal training image. The method is used to optimize the training image of turbidite channel in Plutonio oilfield in Angola. The geological model established by this method is in good agreement with the seismic attributes and can better reproduce the morphological characteristics of the channels and distribution pattern of sands.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11974420)。
文摘Understanding the quantum critical phenomena is one of the most important and challenging tasks in condensed matter physics and the two-impurity Anderson model(TIAM) is a good starting point for this exploration. To this end,we employ the algebraic equation of motion approach to calculate the TIAM and analytically obtain the explicit singleparticle impurity Green function under the soft cut-off approximation(SCA). This approach effectively incorporates the impurity spacing as an intrinsic parameter. By solving the pole equations of the Green function, we have, for the first time, qualitatively calculated the spectral weight functions of the corresponding low-energy excitations. We find that when the impurity spacing is less than one lattice distance, the dynamic Rudermann–Kittel–Kasuya–Yosida(RKKY) interaction effectively enters, resulting in a rapid increase in the spectral weights of the RKKY phase, which ultimately surpass those of the Kondo phase;while the spectral weights of the Kondo phase are strongly suppressed. From the perspective of spectral weights, we further confirm the existence of a crossover from the Kondo phase to the RKKY phase in the TIAM. Based on these results, the reasons for the phenomenon of the Kondo resonance splitting are also discussed.
基金supported by the Major Program of the Chinese Academy of Sciences (Grant No. KJCX1-YW-21)the National Natural Science Foundation of China (Grant Nos. 10672159, 10702069 and 10932010)the National Basic Research Program of China (Grant No.2006CB705805)
文摘The pore structural characteristics have been the key to the studies on the mechanisms of fluids flow in porous media. With the development of experimental technology, the modern high-resolution equipments are capable of capturing pore structure images with a resolution of microns. But so far only 3D volume data of millimeter-scale rock samples can be obtained losslessly. It is necessary to explore the way of virtually reconstructing larger volume digital samples of porous media with the representative structural characteristics of the pore space. This paper proposes a reconstruction method of porous media using the structural characteristics captured by the data templates of multiple-point geostatistics. In this method, the probability of each structural characteristic of a pore space is acquired first, and then these characteristics are reproduced according to the probabilities to present the real structural characteristics in the reconstructed images. Our experimental results have shown that: (i) the deviation of LBM computed permeability respectively on the virtually reconstructed sandstone and the original sample is less than 1.2%; (ii) the reconstructed sandstone and the original sample have similar structural characteristics demonstrated by the variogram curves.
基金supported by the National Natural Science Foundation of China(Nos.42172333,41902304,U1711267)the Knowledge Innovation Program of Wuhan-Shuguang Project(No.2022010801020206).
文摘Stochastic simulation is an essential method for modeling complex geological structures in geosciences.Evaluating the uncertainty of the realizations of stochastic simulations can better describe real phenomena.However,uncertainty evaluation of stochastic simulation methods remains a challenge due to the limited data from geological surveys and the uncertainty in reliability estimation with stochastic simulation models.In addition,understanding the sensitivity of the parameters in stochastic simulation models is invaluable when exploring the parameters with a higher influence on the uncertainty associated with predictions generated from stochastic simulation.To facilitate uncertainty evaluation in stochastic simulation methods,we use the circular treemap as an interactive workflow to explore prediction uncertainty in and the parameter sensitivity of multiple-point geostatistical(MPS)stochastic simulation methods.In this work,we present a novel visualization framework for assessing the uncertainty in MPS stochastic simulation methods and exploring the parameter sensitivity of the MPS methods.We present a new indicator to integrate multiple metrics that characterize geospatial features and visualize these metrics to assist domain experts in making decisions.Parallel coordinates-scatter matrix plots and multi-dimensional scaling(MDS)plots are used to analyze the parametric sensitivity of MPS stochastic simulation methods.The realizations and parameters of two MPS stochastic simulation methods are used to test the applicability of the proposed visualization workflow and the visualization methods.The results demonstrate that our workflow and the visualization methods can assist experts infinding the model with less uncertainty and improve the efficiency of parameter adjustment using different MPS stochastic simulation methods.
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
基金substantially supported by the National Natural Science Foundation of China(NSFC)Program(Nos.41972302,41772345)。
文摘Multiple-point statistics(MPS)is a useful approach to reconstruct three-dimensional models in the macroscopic or microscopic field.Extracting spatial features for three-dimensional reconstruction from two-dimensional training images(TIs),and characterizing non-stationary features with directional ductility are two key issues in MPS simulation.This study presents a step-wise MPS-based three-dimensional structures reconstruction algorithm with the sequential process and hierarchical strategy based on two-dimensional images.An extension method is proposed to construct three-dimensional TIs.With a sequential simulation process,an initial guess at the coarsest scale is simulated,in which hierarchical strategy is used according to the characteristics of TIs.To obtain a more refined realization,an expectation-maximization like iterative process with global optimization is implemented.A concrete example of chondrite micro-structure simulation,in which one scanning electron microscopy(SEM)image of the Heyetang meteorite is used as TI,shows that the presented algorithm can simulate complex non-stationary structures.
基金Supported by Beijing Municipal Science and Technology Commission,No.Z171100000417056Key Support Project of Guo Zhong Health Care of China General Technology Group,No.SGGK202201001。
文摘BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease.Mounting evidence has shown that magnetic resonance(MR)technique has high accuracy in the quantitative analysis of fatty liver,and is suitable for monitoring the therapeutic effect on fatty liver.However,many packaging methods and postprocessing functions have puzzled radiologists in clinical applications.Therefore,selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging.AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver.METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver,following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol.Studies were retrieved from PubMed,Embase,and Cochrane Library databases,and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria.The Reference Citation Analysis database(https://www.referencecitationanalysis.com)was used to analyze citation of articles which were included in this review.RESULTS Forty studies were included for spectroscopy,two-point Dixon imaging,and multiple-point Dixon imaging comparing liver biopsy to other imaging methods.The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed.CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
基金the National Natural Science Foundation of China(Grants 11772186 and 11272203).
文摘Soft pneumatic actuators have been widely used for implementing sophisticated and dexterous movements,due to numerous fascinating features compared with their rigid counterparts.Relatively speaking,modeling and analysis of an entire soft pneumatic actuator considering contact interaction between two adjacent air chambers is extremely rare,which is exactly what we are particularly interested in.Therefore,in order to establish an accurate mechanical model and analyze the overall configuration and stress distribution for the soft pneumatic actuator with large deflection,we consider the contact interaction of soft materials rather than hard materials,to produce an effective enhanced model for soft contact of a large deformable pneumatic actuator.In this article,a multiple-point contact approach is developed to circumvent the mutual penetration problem between adjacent air chambers of the soft actuator that occurs with the single-point contact approach employed in linear elastic rigid materials.In contrast to the previous simplified rod-based model that did not focus on contact interaction which was adopted to clarify the entire deformation of the actuator,the present model not only elaborates nonlinear large deformation and overall configuration variations,but also accurately delineates stress distribution law inside the chamber structure and the stress concentration phenomenon.By means of a corresponding static experiment,a comparison of the simulation results with experimental data validates the effectiveness and accuracy of this model employing a multiple-point contact approach.Excellent simulation of the actual bending deformation of the soft actuator is obtained,while mutual penetration is successfully circumvented,whereas the model with single-point contact cannot achieve those goals.Finally,as compared with the rod-based model,the results obtained using the proposed model are more consistent with experimental data,and simulation precision is improved.
基金Project supported by the National Natural Science Foundation of China(Grant No.11974420)。
文摘Based on the algebraic equation of motion(AEOM)approach,we have studied the single-impurity Anderson model by analytically solving the AEOM of the f-electron one-particle Green function in the Kondo limit.The related spectral function satisfies the sum rule and shows that there is a well-known three-peak structure at zero temperature.In the low energy limit,we obtain the analytical formula of the Kondo temperature that is the same as the exact solution in form except for a prefactor.We also show that the shape of the Kondo resonance is the Lorentzian form and the corresponding weight is proportional to the spin-flip correlation function.
基金Supported by the China National Science and Technology Major Project(2017ZX05005-004-002,2016ZX05031-002-001)National Natural Science Foundation of China(41872138)Open Foundation of Top Disciplines in Yangtze University(2019KFJJ0818029)。
文摘An orthogonal 2D training image is constructed from the geological analysis results of well logs and sedimentary facies;the 2 D probabilities in three directions are obtained through linear pooling method and then aggregated by the logarithmic linear pooling to determine the 3 D multi-point pattern probabilities at the unknown points,to realize the reconstruction of a 3 D model from 2D cross-section.To solve the problems of reducing pattern variability in the 2 D training image and increasing sampling uncertainty,an adaptive spatial sampling method is introduced,and an iterative simulation strategy is adopted,in which sample points from the region with higher reliability of the previous simulation results are extracted to be additional condition points in the following simulation to improve the pattern probability sampling stability.The comparison of lateral accretion layer conceptual models shows that the reconstructing algorithm using self-adaptive spatial sampling can improve the accuracy of pattern sampling and rationality of spatial structure characteristics,and accurately reflect the morphology and distribution pattern of the lateral accretion layer.Application of the method in reconstructing the meandering river reservoir of the Cretaceous McMurray Formation in Canada shows that the new method can accurately reproduce the shape,spatial distribution pattern and development features of complex lateral accretion layers in the meandering river reservoir under tide effect.The test by sparse wells shows that the simulation accuracy is above 85%,and the coincidence rate of interpretation and prediction results of newly drilled horizontal wells is up to 80%.
文摘Purpose:This study aimed to examine the reliability and validity of load-velocity(L-V)relationship variables obtained through the 2-point method using different load combinations and velocity variables.Methods:Twenty men performed 2 identical sessions consisting of 2 countermovement jumps against 4 external loads(20 kg,40 kg,60 kg,and80 kg)and a heavy squat against a load linked to a mean velocity(MV)of 0.55 m/s(load_(0.55)).The L-V relationship variables(load-axis intercept(L_(0)),velocity-axis intercept(v_(0)),and area under the L-V relationship line(A_(line)))were obtained using 3 velocity variables(MV,mean propulsive velocity(MPV),and peak velocity)by the multiple-point method including(20-40-60-80-load_(0.55))and excluding(20-40-60-80)the heavy squat,as well as from their respective 2-point methods(20-load_(0.55)and 20-80).Results:The L-V relationship variables were obtained with an acceptable reliability(coefncient of variation(CV)≤7.30%;intra-class correlation coefficient>0.63).The reliability of L_(0)and v_(0)was comparable for both methods(CV_(ratio)(calculated as higher value/lower value):1.11-1.12),but the multiple-point method provided Al_(ine)with a greater reliability(CV_(ratio)=1.26).The use of a heavy squat provided the L-V relationship variables with a comparable or higher reliability than the use of a heavy countermovement jump load(CV_(ratio):1.06-1.19).The peak velocity provided the load-velocity relationship variables with the greatest reliability(CV_(ratio):1.15-1.86)followed by the MV(CV_(ratio):1.07-1.18),and finally the MPV.The 2-point methods only revealed an acceptable validity for the MV and MPV(effect size≤0.19;Pearson s product-moment correlation coefficient≥0.96;Lin's concordance correlation coefficient≥0.94).Conclusion:The 2-point method obtained from a heavy squat load and MV or MPV is a quick,safe,and reliable procedure to evaluate the lower-body maximal neuromuscular capacities through the L-V relationship.
基金supported by Korea Institute of Geoscience and Mineral Resources(Project No.GP2017-024)Ministry of Trade and Industry [Project No.NP2017-021(20172510102090)]funded by National Research Foundation of Korea(NRF)Grants(Nos.NRF-2017R1C1B5017767,NRF-2017K2A9A1A01092734)
文摘Most inverse reservoir modeling techniques require many forward simulations, and the posterior models cannot preserve geological features of prior models. This study proposes an iterative static modeling approach that utilizes dynamic data for rejecting an unsuitable training image(TI) among a set of TI candidates and for synthesizing history-matched pseudo-soft data. The proposed method is applied to two cases of channelized reservoirs, which have uncertainty in channel geometry such as direction, amplitude, and width. Distance-based clustering is applied to the initial models in total to select the qualified models efficiently. The mean of the qualified models is employed as a history-matched facies probability map in the next iteration of static models. Also, the most plausible TI is determined among TI candidates by rejecting other TIs during the iteration. The posterior models of the proposed method outperform updated models of ensemble Kalman filter(EnKF) and ensemble smoother(ES) because they describe the true facies connectivity with bimodal distribution and predict oil and water production with a reasonable range of uncertainty. In terms of simulation time, it requires 30 times of forward simulation in history matching, while the EnKF and ES need 9000 times and 200 times, respectively.
基金This paper was financially supported by the National Natural Science Foundation of China(Grant No.51679251)the authors would like to express their sincere thanks.
文摘For new submarine pipeline maintenance lifting equipment,a specialized analysis model is constructed in this study.A pipeline can be divided into the lifted portion and the touch-down portion that lies on the seabed,and each of these portions can be analyzed separately by converting the continuity conditions at the touch-down points to boundary conditions.The typical two-point sequence secant iterative technique is used to obtain the unknown lifted length and determine pipeline lifting confgurations.The BVP4C module in MATLAB software is used to solve this multiple-point boundary value problem issued from frst-order diferential equations.Also,the triple-point lifting mode of truncated maintenance and the two-point lifting mode of online maintenance are discussed.When the lifted heights at truss positions are shown,the lifting deformation,lifting forces,bending moment distribution,and axial force distribution can be analyzed using a dedicated analysis program.Numerical results can then be used to design a lifting strategy to protect the pipeline.
文摘The purpose of this paper is to overcome the limitations of the traditional cranial defects restoration technique and better satisfy the aesthetic and comfort demands of different patients. An arithmetic profile curve blending technique was used based on a well-proportioned points cloud data obtained by analyzing computer tomography (CT) images of the patients. This technique uses reverse engineering technique to reconstruct a model of the defective cranium, taking all the characteristics of the protruding cranium into consideration to check the form and appropriateness of the restoration and to adjust the surface in real time to obtain the ideal shape. Then, the model is transferred to a multiple-point forming (MPF) pressure machine to produce a titanium alloy restoration model. The system has greater flexibility, shorter production cycles, and lower cost through the use of digital production technology, guarantees the quality of the cranial defects restoration model, reduces the surgical risks, and alleviates the patients’ pain. In addition, an improved contour curved bridge algorithm technique is used to repair any cranium defects on the contour curve to make the contour more complete and closed.
基金financially supported by a Newton Fund Impact Scheme under the Newton-Ungku Omar Fund Partnership(Grant No.IF022-2020)funded by the UK Department for Business,Energy and Industrial Strategy and Malaysian Industry-Government Group for High Technology(MIGHT)and delivered by the British Council and MIGHT+1 种基金the support from University of Malaya(Grant Nos.RK021-2019 and TOP100PRC)the support from the Royal Academy of Engineering.
文摘A new and easy-to-fabricate strain sensor has been developed,based on fiber Bragg grating(FBG)technology embedded into a thermoplastic polyurethane filament using a 3-dimensional(3D)printer.Taking advantage of the flexibility and elastic properties of the thermoplastic polyurethane material,the embedding of the FBG provides durable protection with enhanced flexibility and sensitivity,as compared to the use of a bare FBG.Results of an evaluation of its performance have shown that the FBG sensors embedded in this way can be applied effectively in the measurement of strain,with an average wavelength responsivity of 0.0135 nm/cm of displacement for tensile strain and -0.0142 nm/cm for compressive strain,both showing a linearity value of up to 99%.Furthermore,such an embedded FBG-based strain sensor has a sensitivity of~1.74 times greater than that of a bare FBG used for strain measurement and is well protected and suitable for in-the-field use.It is also observed that the thermoplastic polyurethane based(TPU-based)FBG strain sensor carries a sensitivity value of~2.05 times higher than that of the polylactic acid based(PLA-based)FBG strain sensor proving that TPU material can be made as the material of choice as a“sensing”pad for the FBG.